
NOVEMBER 2011�CANCER DISCOVERY | 463

        RESEARCH WATCH                              

  Major finding:  Differential changes in 
death and survival signaling underlie 
oncogene addiction .  

  Impact:   A simple, noninvasive method 
can identify patients who may benefit 
from targeted therapy .  

Approach:  Mathematical modeling is 
combined with imaging to predict on-
cogene addiction .      

 Personalized Medicine  

 MATHEMATICAL MODELING CAN IDENTIFY ONCOGENE-ADDICTED TUMORS 
regardless of oncogene or tumor type. The authors then used 
serial imaging data to determine whether tumor growth and 
regression kinetics were sufficient for a support vector machine 
(SVM) learning algorithm to distinguish an oncogene-addicted 
genotype. After only the first 2 weekly scans following onco-
gene inactivation in either  Kras -addicted or  Myc -induced (but 
not addicted) murine lung cancers, the SVM could successfully 
classify tumors. Using the mouse SVM classifier on CT scan 
imaging data from lung cancer patients treated with erlotinib, 
the authors were able to predict the  EGFR  genotype and progres-
sion-free survival of patients after 4 weekly CT scans. Although 
 EGFR  mutational status is a known predictor of response to 
erlotinib, it is not always possible to obtain a sample for biopsy 
or screen for  EGFR  mutations. Quantitative imaging algorithms 
may therefore aid in the personalized management of patients 
treated with targeted therapies. ≠ 

        Tran   PT,     Bendapudi   PK,     Lin   HJ,     Choi   P,     Koh   S,     Chen   J   , et al. 
 Survival and death signals can predict tumor response to therapy after 
oncogene inactivation.   Sci Transl Med   2011 ; 3 : 103 ra99.       

   

 It remains unclear which cellular properties underlie a tu-
mor’s dependence on a single oncogenic signaling pathway. 
Tran and colleagues sought to elucidate the general underlying 
mechanisms of oncogene addiction with the ultimate goal of de-
veloping a strategy to quickly determine whether oncogene-tar-
geted treatment will be effective. First, using a mouse model of 
Kras -addicted lung cancer, they combined immunohistochem-
istry of several prosurvival and prodeath effector molecules at 
multiple time points before and after  Kras  inactivation with the 
proliferative and apoptotic indices to generate an ordinary dif-
ferential equation model of aggregate survival and death signals 
over time. This model fit serial imaging data and showed that 
the response of oncogene-addicted tumors could be explained 
almost entirely by a sharp attenuation of the survival signal 
and a more gradual decline in the death signal. The authors 
also used this model to successfully predict the effects of par-
ticular prosurvival (Stat, Akt) and prodeath (p53) pathways on 
oncogene-addicted tumor growth, and to predict the effect of 
Myc  inactivation in  Myc -addicted murine lymphoma, suggest-
ing that this model is applicable to oncogene-addicted tumors 

and one functional  CYP3A5  polymorphism was 
associated with increased risk of sunitinib dose 
reduction secondary to toxic effects. These find-
ings provide relevant insight into the pharmaco-
dynamics and pharmacokinetics of sunitinib, as 
VEGFR3 is a direct target and CYP3A5 is a mem-
ber of the cytochrome P450 family of enzymes 
involved in drug metabolism. Together, the data 
represent an important advance in personalized 
medicine, and with additional validation, poten-

tially may be used to identify which RCC patients will benefit 
from treatment with sunitinib. ≠ 

        Garcia-Donas   J,     Esteban   E,     Leandro-García   LJ,     Castellano  
 DE,     del Alba   AG,     Climent   MA   , et al.  Single nucleotide polymor-
phism associations with response and toxic effects in patients with 
advanced renal-cell carcinoma treated with first-line sunitinib: 
a multicentre, observational, prospective study.   Lancet Oncol 
2011;12:1143–50.       

 Renal cell carcinoma (RCC), the most com-
mon type of kidney cancer in adults, is resistant 
to both chemotherapy and radiation therapy. 
Sunitinib malate, an orally administered tyrosine 
kinase inhibitor with activity against VEGF recep-
tor (VEGFR), has been shown to increase progres-
sion-free survival (PFS) in patients with advanced 
clear-cell RCC and is currently a standard treat-
ment option. However, a subset of patients fails 
to respond to therapy or develops treatment-lim-
iting toxicity. Garcia-Donas and colleagues hypothesized that 
genetic polymorphisms among patients may serve as biomark-
ers that can predict response or toxicity to sunitinib. Previously 
untreated patients with clear-cell RCC were enrolled in an ob-
servational, prospective study that assessed response, PFS, and 
toxicity to sunitinib in relation to single-nucleotide polymor-
phisms (SNP) in nine genes thought to be potentially involved 
in sunitinib action, metabolism, or transport. Interestingly, two 
VEGFR3  polymorphisms were associated with a shorter PFS, 

  Major finding:  VEGFR3  and  CYP3A5  
polymorphisms predict sunitinib re-
sponse and toxicity.  

  Approach: An observational, prospec-
tive study was performed in previ-
ously untreated RCC patients.  

  Impact: Genetic markers may be used 
to predict efficacy and toxicity of 
sunitinib.                

Pharmacogenomics  

 SNPs PREDICT SUNITINIB TREATMENT OUTCOME IN RCC 
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Breaking Advances
Highlights from Recent Cancer Literature

Killer Activity Enhanced

T cells that express the cell-surface
marker CD8 have undoubted
potential to recognize and destroy
malignant cells expressing cognate
antigens. For some human cancers,
the more CD8þ T cells in a tumor
microenvironment, the better the

patient's prognosis. However, by the time most cancers are
detected, there may not be enough of these useful cells to have a
major clinical impact. One treatment approach has been to
harvest T cells from a patient, expand them in the presence of a
cocktail of cytokines, and return the T cells to the patient in the
hope that they may generate specific anticancer immunity.
Although this strategy works in some instances, it is usually
ineffective, not least because themalignant cells acquire resistance
to the killing methods used by CD8þ T cells. de Bruyn and
colleagues have described novel methods leading to 500-fold
increased killing potential of CD8þ T cells, and these novel
methods are easily translatable to the clinic. This novel strategy
targeted one particular killing molecule—TNF-related apoptosis-
inducing ligand (TRAIL)—to the T-cell surface. This resulted in
greatly enhanced ability of T cells to kill targeted malignant cell
lines and primary cells from cancer patients at a ratio of 2:1 T cells
to malignant cells; without TRAIL, it took a ratio of 100:1 T cells to
malignant cells to achieve similar results. The authors tried 2
different approaches: (i) an anti-CD3:TRAIL, in which the anti-CD3
component also played a role in activating T cells, and in which the
killing mechanism involved granzyme and perforin; and
(ii) K12:TRAIL, which functioned by activation of caspases in
malignant cells. Results from the in vitro and in vivo xenograft
experiments suggest that anti-CD3:TRAIL may be particularly
useful for ex vivo tumor cell purging of bonemarrow, or for tumors
in anatomically confined regions. In contrast, results from the
K12:TRAIL approach show enhanced graft-versus-tumor
responses without causing detrimental graft-versus-host disease.
The K12:TRAIL approach could be further varied with the use of
TRAIL fusion proteins incorporating other immunomodulatory
ligands or antibody fragments. To this end, the authors suggest
other ways to simultaneously stimulate T cells and add another
killing molecule to their surface. (Image courtesy of MorgueFile.)

de BruynM,Wei Y,WiersmaVR, Samplonius DF, KlipHG, vander Zee
AG, et al. Cell surface delivery of TRAIL strongly augments the
tumoricidal activity of T cells. Clin Cancer Res 2011;17:5626–37.

Tumor-Entrained Neutrophils Block Metastatic
Spread in Breast Cancer

Cells of the immune system can serve
as friends or foes with regard to
cancer development. A prevailing
model suggests that immune
surveillance is triumphant at an early
stage of tumor formation, with

advanced cancers generally entraining the immune system to drive
malignancy. To clarify the role of immunosurveillance in breast
cancer metastases, Granot and colleagues implanted breast

cancers orthotopically inmice and performedmicroarray analyses
of liver and lung tissues. A number of neutrophil-specific genes
were expressed in lung, but not liver. Depletion of neutrophils
blockedmetastases, indicating that neutrophil seeding of the lungs
blocked establishment of metastases. Subsequent experiments
showed that neutrophils were entrained through secretion of
CCL2, and blocked malignant cells through production of H2O2.
Similar tumor-entrained neutrophils were also isolated from
women with newly diagnosed breast cancer. These results suggest
that neutrophils are co-opted by primary breast cancers to block
spread to metastatic sites. (Image courtesy of L.M. Coussens,
University of California, San Francisco.)

Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor
entrained neutrophils inhibit seeding in the premetastatic lung.
Cancer Cell 2011;20:300–14.

A Germline Variant in p53 Confers Susceptibility
to Basal Cell Carcinoma, Prostate Carcinoma,
and Glioma

Basal cell carcinoma is a very common skin cancer associated with
sun exposure and with mutations in genes regulating Sonic
Hedgehog signaling. To identify candidate susceptibility genes,
Stacey and colleagues performed a genome-wide association study
of 1,400 affected individuals and 30,000 controls in the Icelandic
population, using single-nucleotide polypeptide arrays, with
whole-genome sequencing of 460 additional individuals. They
identified a strong signal (OR, 2.36; P ¼ 5.2 � 10�17) in the 3'
untranslated region of TP53, which was subsequently confirmed in
non-Icelanders, albeit at frequencies below the 0.019 level found in
Icelanders. This variant, which leads to impaired 3' processing of
TP53 through modification of the polyA sequence, was also
associated with susceptibility to prostate cancer (OR, 1.63; P¼ 1.1
� 10�4) and to glioma (OR, 2.35; P¼ 1.0� 10�5), but not for breast
cancer, amalignancy linked tomutation in p53, which leads to gain
of function in this tumor-suppressor gene.

Stacey SN, Sulem P, Jonasdottir A, Masson G, Gudmundsson J,
Gudbjartsson DF, et al. A germline variant in the TP53
polyadenylation signal confers cancer susceptibility. Nat Genet 2011;
43:1098–103.

Macrophages Block Death of Metastatic
Breast Cancer Cells

Metastatic breast carcinoma cells
exhibit increased expression of
vascular cell adhesion molecule-1
(VCAM-1), but the functional
consequence of this increased
expression has remained enigmatic. A
recent report by Chen and colleagues
has revealed a prosurvival function for

VCAM-1–positive breast carcinoma cells in tumor
microenvironments heavily infiltrated bymyeloid cells, specifically
macrophages expressing a4-integrins. Interaction of macrophage
a4-integrin with VCAM-1 resulted in VCAM-1 membrane
clustering and subsequent EZRIN-dependent triggering of AKT
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activation, which in turn resulted in a prosurvival signal for breast
carcinoma cells that metastasized to the lung. Significantly,
blockade of interaction between VCAM-1 and a4-integrin
enhanced apoptotic activity after exposure to proapoptotic
cytokines including TRAIL. Together, these data indicate that
breast carcinoma cells metastasize in part by co-opting a
physiologic mechanism that enables them to increase their
survival by interacting with macrophages in their local tumor
microenvironments. These results illustrate how innate immune
cells can causally contribute to metastasis by providing a survival
advantage to cells that carry a receptor eliciting a prosurvival
advantage. Hence, targeting of tumor cell and leukocyte
interactions may provide a novel approach for preventing
penultimate stages of cancer progression, namely metastasis.
(Image courtesy of MorgueFile.)

Chen Q, Zhang XH, Massagu�e J. Macrophage binding to receptor
VCAM-1 transmits survival signals in breast cancer cells that invade
the lungs. Cancer Cell 2011;20:538–49.

Mathematical Models for Predicting Drug
Responses of Tumors

The ability to predict when targeting the inactivation of a gene
product will result in tumor regression would be highly useful
for development of new anticancer therapeutics. Tran and
colleagues used a computational biologic approach to develop
methods for predicting when malignant cells are addicted to

oncogenes with the hope that this
strategy could inform development and
clinical use of targeted therapeutics. To
start, they showed the utility of the
mathematical model for predicting
when oncogene inactivation would
result in tumor regression, using
transgenic mouse models of tumor
progression to evaluate survival and
death signals in malignant cells.
Surprisingly, they found that both types of signals decreased
upon oncogene inactivation, but the former decreased more
quickly, when a tumor is poised to regress. This response was
similar to the "oncogenic shock" model proposed by other
investigators. Next, the investigators showed the utility of their
mathematical modeling approaches to predict when inhibition
of epidermal growth factor
receptor activation would result in regression of tumors in
patients with adenocarcinoma, thus providing an example of
the increasing feasibility for in silico modeling of
pathophysiologic processes. Further work is required to discern
whether these approaches can be used prospectively to predict
the efficacy of a targeted therapeutic, and whether they can be
applied to combined therapies as well as single agents.
(Image courtesy of MorgueFile.)

Tran PT, Bendapudi PK, Lin HJ, Choi P, Koh S, Chen J, et al. Survival
and death signals can predict tumor response to therapy after
oncogene inactivation. Sci Transl Med 2011;3:103ra99.

Note:BreakingAdvances arewritten byCancer ResearchEditors. Readers are encouraged to consult the articles referred to in each item for
full details on the findings described.
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RESEARCH HIGHLIGHTS

Targeted therapies can produce dramatic 
responses in some patients, but in many 
cases it is difficult to tell who will respond 
and who will not. A mathematical model 
of survival and death signals has predicted 
which lung cancer tumors will respond 
to the EGFR tyrosine kinase inhibitor 
erlotinib, pointing the way to a more-
informed use of this drug, and other drugs 
targeting oncogene addiction in cancer.

The Felsher laboratory has been 
studying the phenomenon of oncogene 
addiction for over 10 years. Based on this 
research, “we believed that it should be 
possible to ‘model’ oncogene addiction 
and thereby predict when oncogene 
addiction will occur,” explains Felsher.

The researchers teamed up with 
members of the Paik laboratory, 
who specialize in the measurement, 
quantification, analysis and modeling of 
imaging data. As Felsher outlines, “we 
decided together that we could ‘model’ 
imaging combined with cell signaling 
data to attempt to predict and define 
oncogene addiction.”

TARGETED THERAPIES

Model reveals addiction to oncogenes
The team studied conditional mouse 

models of lung cancer and lymphoma 
using imaging and assessed biomarkers 
associated with proliferation and 
apoptosis. From these data they developed 
a mathematical model based on ordinary 
differential equations that predicted 
oncogene addiction from the differential 
changes in survival and cell death signals.

Crucially, the investigators were able 
to use this model and imaging to predict 
oncogene addiction and, therefore, 
responses of patients with lung cancer who 
received erlotinib as part of a clinical trial.

Going forward, Felsher says, “we plan 
to improve our model by incorporating 
other variables such as the role of self-
renewal, senescence and home immune 
contributions and to prospectively test our 
models in a clinical study.”

Rebecca Kirk

Original article Tran, P. T. et al. Survival and death signals 
can predict tumor response to therapy after oncogene 
inactivation. Sci. Transl. Med. 3, 103ra99 (2011)

© 2011 Macmillan Publishers Limited. All rights reserved
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             � e golden ages of several sciences—from 
chemistry, to physics, to economics—have 
invariably coincided with the ability to com-
plement their empirical foundation with 
quantitative analytical models that could 
predict the results of a “thought experiment” 
(gedankenexperiment) without the need to 
actually perform it. For instance, chemistry 
experienced major development as a disci-
pline following the formulation of some of 
its basic quantitative principles, such as the 
conservation of mass proposed by Antoine 
Lavoisier at the end of the 18th century. 
O� en, a second period of expansion has re-
sulted when computing power allowed the 
simulation of complex quantitative models 
that could not be solved analytically.

In biology and medicine, the use of 
quantitative models is relatively recent and 
has occurred at a juncture when large-scale 
computing platforms are already ubiqui-
tously available and genome-scale experi-
mental techniques that generate the massive 
amounts of data necessary for quantitative 
modeling are achieving maturity. � is sug-
gests that the golden age of biology may be 
imminent, spurred by our growing ability to 
model physiological and pathophysiologi-
cal processes in silico. In this context, Tran 
and colleagues present, in this week’s issue 
of Science Translational Medicine, an elegant 
and startlingly simple framework for the 
quantitative modeling of oncogene addic-

tion (1). Despite its simplicity, this model 
yields all but simple results and creates the 
prerequisites to understand this phenom-
enon at a more quantitative and predictive 
level. Such an endeavor could not be time-
lier, because the elucidation of oncogene 
addiction mechanisms was recently listed as 
one of the “big questions” by the homony-
mous initiative launched by Harold Varmus, 
the recently appointed director of the U.S. 
National Cancer Institute (2).

Tran et al. started from the empirical 
observation � rst suggested by Weinstein in 
2002 (3) that cancers can exhibit dramatic 
regression upon inhibition of relevant onco-
genes. Such a premise constitutes the ratio-
nale behind the majority of nonchemotoxic 
(that is, molecularly targeted) therapeutic 
approaches for cancer currently used in the 
clinic, such as the drugs trastuzumab, erlo-
tinib, and imatinib, which are used to treat 
HER2-ampli� ed breast tumors (4), EFGR-
ampli� ed lung cancers (5), and BCR-ABL 
fusion gene–driven chronic myelogenous 
leukemia (CML) (6), respectively. Although 
the precise mechanisms that underlie onco-
gene addiction are still largely elusive, Tran 
and colleagues proposed that aberrant acti-
vation of oncogenes, such as MYC or K-Ras, 
ultimately disrupts the competitive balance 
between pro-survival and pro-death signals 
in the cell. � us, the ability to quantitatively 
model the competition between these pro-
grams may help us to better understand 
oncogene addiction and predict its e� ect on 
tumor regression.

On the basis of this hypothesis, the au-
thors used distinct quantitative readouts—
imaging and in situ biomarkers of prolif-
eration and apoptosis—to characterize the 
responses of pro-survival and pro-death 
signals to oncogene inactivation. Despite 
its simplicity, their corresponding ordinary 
di� erential equation (ODE) model was ef-

fective in representing and predicting the 
di� erential dynamics of several pro-survival 
and pro-death signaling factors [phosphor-
ylated extracellular signal–regulated kinase 
1 (Erk1) and Erk2, the serine/threonine-
protein kinase Akt1, signal transducer and 
activator of transcription 3 (Stat3) and Stat5, 
and the mitogen-activated protein kinase 
p38] that contribute to the aggregate cellular 
survival and death signals a� er oncogene in-
activation. More importantly, the model was 
extended to predict the relevance of speci� c 
genetic alterations, including homozygous 
deletion of the gene that encodes the tumor 
suppressor protein p53 (p53−/−), activating 
mutations in the STAT3 gene that specify a 
constitutively activated version of the Stat3 
protein (STAT3-d358L), and mutations in 
the AKT1 gene that give rise to constitu-
tively activated Akt1 (myr-Akt1). Although 
this is a small subset of oncogene-addiction 
modulators, this analysis constitutes proof-
of-concept for the systematic representation 
of a much larger repertoire of germline and 
somatic alterations that de� ne the genetic 
landscape of a cancer cell and mediate its 
response to oncogene inactivation.

Furthermore, the model was highly ef-
fective in predicting progression-free sur-
vival of lung cancer patients a� er erlotinib 
therapy, on the basis of the tumors’ inferred 
EGFR genotypic landscape. � ese � ndings 
suggest that, using a relatively small number 
of genetic parameters, response to onco-
gene-inactivation therapy could be quanti-
tatively predicted by treating pro-survival 
and pro-death signals as largely indepen-
dent, with obvious potential application to 
personalized therapy.

MODELING LIFE AND DEATH

To model response of pro-survival and 
pro-death pathways to oncogene inactiva-
tion as a function of several modulating 
genetic events, Tran and colleagues used 
a transgenic mouse model with a doxycy-
cline-inducible, K-rasG12D–activating mu-
tation vector, which is known to induce 
lung adenocarcinoma that displays classic 
oncogene addiction. Lung-speci� c expres-
sion of K-rasG12D induced tumorigenesis in 
the lungs with a moderate latency of about 
26 weeks. Removal of doxycycline from 
drinking water was su�  cient to turn o�  the 
K-rasG12D promoter, thus simulating onco-
gene inactivation and allowing one to mea-
sure tumor growth and regression kinetics 
under a number of constraints, with the use 
of serial weekly microcomputer tomography 

O N C O G E N E  A D D I C T I O N
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P E R S P E C T I V E

 The fusion of empirical science with large-scale computing platforms has allowed rapid 
advances in our ability to model physiological and pathophysiological processes in silico. 
In this week’s issue of Science Translational Medicine, Tran et al. present a simple frame-
work for the quantitative modeling of oncogene addiction that provides mechanistic 
insights into tumor biology.
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(microCT) imaging. � e ODE 
model that was inferred from 
this analysis not only has prov-
en to be robust in the speci� c 
context of K-Ras addiction but 
also was used to extrapolate the 
analysis to MYC-addicted lym-
phomas, with good � t—a small 
deviation between predicted 
and observed results. � ese re-
sults suggest that over� tting (a 
classical statistical issue that 
occurs when the model � ts the 
noise rather than the data) is not 
an issue in this case and that the 
model is generalizable to other 
oncogene-addiction scenarios.

A particularly interesting re-
sult of the model that could not 
have been predicted without a 
quantitative framework is that 
tumor remission does not ap-
pear to be driven either by an 
increase in apoptosis or by a 
decrease in proliferation alone. 
Rather, both pro-survival and 
pro-death signals are reduced 
a� er oncogene inactivation. Yet, 
the balance between the two 
signals is tilted to favor over-
all reduction in tumor mass. 
� is could contribute to our 
mechanistic understanding of 
oncogene addiction, as has been 
similarly suggested on the basis of previous 
in vitro studies that used human tumor–
derived cell lines (7). It also begs the ques-
tion of whether the balance between these 
signals may be used to predict addiction in a 
more general set of therapeutic approaches 
that target a variety of oncogene and non-
oncogene dependencies in the cell, as well as 
their genetic modulators (Fig. 1).

THERAPY CRYSTAL BALL?

To address this question, Tran and col-
leagues performed an intriguing experi-
ment to determine whether MYC oncogene 
addiction in lymphoma could be modu-
lated by the ancillary genetic alterations 
described above—p53−/−, Stat3-d358L, and 
myr-Akt1—based only on the e� ects that 
these mutations have on pro-survival and 
pro-death signals.

Speci� cally, they tested whether indepen-
dent measurement of pro-life and pro-death 
signals in cells that harbor the correspond-
ing genetic alterations could recapitulate 
tumor growth when plugged into the previ-

ous computational model. Interestingly, the 
authors’ model e� ectively predicted the ob-
served in� uences of these genetic manipu-
lations. For instance, although Stat3-d358L 
and myr-Akt1 reduced apoptosis marginally 
in lymphoma cells and did not manage to 
tilt the survival-death signal balance a� er 
oncogene inactivation, p53−/− had a major 
e� ect on apoptosis (75% abrogation of tu-
mor cell death in p53−/− tumors as compared 
with 19% in control cells without the p53 
deletion), thus tilting the balance toward 
cancer cell survival and tumor growth af-
ter MYC inactivation. � erefore, the model 
showed that p53−/− tumors are no longer ad-
dicted to MYC, which could have important 
consequences for treatment—for instance, 
by suggesting that anti-MYC therapy should 
be avoided in p53−/− tumors, thus permit-
ting the design of personalized therapeutic 
approaches once a suitable MYC inhibitor 
becomes available.

Will modeling of oncogene addiction 
by its e� ect on pro-survival and pro-death 
signals work for every tumor type? As the 

authors themselves realize, 
probably not. Previous work 
from this group has shown that 
oncogene addiction involves 
restoration of cellular senes-
cence as well as the shutdown 
of angiogenesis (8, 9), and both 
of these mechanisms appear to 
be dependent on the host’s im-
mune system (10). Moreover, it 
is clear that di� erent oncogenes 
contribute to tumorigenesis 
through disparate programs 
other than survival and death 
signaling. Indeed, many onco-
genes are associated with alter-
native regulatory functions. 

For example, translocation 
of a fragment of the BCL6 gene 
in di� use large B cell lymphoma 
(DLBCL) induces transcrip-
tional inactivation of the gene 
that encodes Blimp1, a tran-
scription factor that controls 
terminal B cell di� erentiation 
into plasma cells, leading to tu-
morigenesis. As a result, target-
ing BCL6 in these tumors may 
not have a direct e� ect on pro-
survival and pro-death signals, 
but it may simply induce ter-
minal di� erentiation of tumor 
cells. Yet, because inhibition of 
pro-apoptotic and pro-senes-

cence mechanisms coupled with activation 
of proliferative programs is a hallmark of 
many aggressive tumors, we expect that ad-
diction to a large repertoire of oncogenes 
will directly impact these signals. � is al-
lows direct application of the computation-
al framework introduced by Tran et al.

COMPLEX COMPUTING

Our current understanding of the biologi-
cal mechanisms of tumorigenesis is built on 
more than 50 years of molecular cell biol-
ogy research performed by a large number 
of investigators. In comparison, computa-
tional modeling of biological processes is a 
relatively recent discipline, practiced by only 
a handful of researchers. However, there is 
unmistakable evidence that computational 
models are becoming increasingly descrip-
tive, accurate, and useful in elucidating cell 
processes and behavior at the molecular level 
(11–14). Such models have suggested that (i) 
cancer cells may not be uniquely addicted to 
oncogenes but can also be addicted to non-
oncogenes that encode proteins that imple-

Fig. 1. Predicting patient response. Although not an all-seeing crys-
tal ball, the mathematical model devised by Tran et al. revealed, among 
other things, that anti-MYC therapy should be avoided in p53−/− tumors, 
a fi nding that one day may aid in the design of personalized therapeutic 
approaches. 
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ment tumor-speci� c regulatory bottlenecks 
(15) and (ii) such non-oncogene addictions 
may be exploited therapeutically (16). � e 
� rst steps in predictive model–building en-
deavors will necessarily require construction 
of the cornerstone infrastructure of the dis-
cipline, on top of which more complex edi-
� ces of knowledge can be assembled. 

To the expert biologist’s eye, some of 
these initial constructions may fail to ac-
count for the full complexity and sophistica-
tion of the biological process they attempt 
to model. � ese initial structures may look 
more like primitive shacks, held together by 
duct tape, rather than elegant contemporary 
architectural wonders. However, these early 
e� orts are necessary and should be encour-
aged, because they constitute the � rst oblig-
atory step that leads to more sophisticated 
and realistic quantitative models that will 
ultimately recapitulate regulation of cellular 
processes. As a result, models such as those 
produced by Tran and colleagues should be 
applauded. � ey are simple enough to be 
analytically achievable and can be e� ective-
ly simulated on today’s computers. And yet, 
they provide valuable insight that could not 
be gleaned on a purely empirical basis.
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CANCER
Survival and Death Signals Can Predict Tumor
Response to Therapy After Oncogene Inactivation

Phuoc T. Tran,1*† Pavan K. Bendapudi,2* H. Jill Lin,3* Peter Choi,2 Shan Koh,2 Joy Chen,2

George Horng,2 Nicholas P. Hughes,3 Lawrence H. Schwartz,4 Vincent A. Miller,5

Toshiyuki Kawashima,6 Toshio Kitamura,6 David Paik,3‡§ Dean W. Felsher2‡§
Cancers can exhibit marked tumor regression after oncogene inhibition through a phenomenon called “onco-
gene addiction.” The ability to predict when a tumor will exhibit oncogene addiction would be useful in the
development of targeted therapeutics. Oncogene addiction is likely the consequence of many cellular programs.
However, we reasoned that many of these inputs may converge on aggregate survival and death signals. To test
this, we examined conditional transgenic models of K-rasG12D– or MYC-induced lung tumors and lymphoma com-
bined with quantitative imaging and an in situ analysis of biomarkers of proliferation and apoptotic signaling. We
then used computational modeling based on ordinary differential equations (ODEs) to show that oncogene ad-
diction could be modeled as differential changes in survival and death intracellular signals. Our mathematical
model could be generalized to different imaging methods (computed tomography and bioluminescence imag-
ing), different oncogenes (K-rasG12D and MYC), and several tumor types (lung and lymphoma). Our ODE model
could predict the differential dynamics of several putative prosurvival and prodeath signaling factors [phospho-
rylated extracellular signal–regulated kinase 1 and 2, Akt1, Stat3/5 (signal transducer and activator of tran-
scription 3/5), and p38] that contribute to the aggregate survival and death signals after oncogene inactivation.
Furthermore, we could predict the influence of specific genetic lesions (p53−/−, Stat3-d358L, and myr-Akt1) on
tumor regression after oncogene inactivation. Then, using machine learning based on support vector machine,
we applied quantitative imaging methods to human patients to predict both their EGFR genotype and their
progression-free survival after treatment with the targeted therapeutic erlotinib. Hence, the consequences of
oncogene inactivation can be accurately modeled on the basis of a relatively small number of parameters that
may predict when targeted therapeutics will elicit oncogene addiction after oncogene inactivation and hence
tumor regression.
INTRODUCTION

Cancer is largely caused by activation of oncogenes or inactivation of
tumor suppressor genes, resulting in the pathological disruption of a
multitude of cellular signaling programs including cellular prolif-
eration, apoptosis, self-renewal/differentiation, as well as host pro-
grams of angiogenesis and immune surveillance (1, 2). Surprisingly,
the inactivation of even a single oncogene can induce marked tumor
regression, revealing that some tumors can be highly dependent or
“addicted” to specific oncogenes (3, 4). Recently, it has been suggested
on the basis of in vitro studies in tumor-derived cell lines that such
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oncogene addiction may be defined by the interaction between sur-
vival and death programs (3, 5, 6). However, these experiments were
performed in vitro. It is not clear a priori what factors are most im-
portant for determining oncogene addiction. Indeed, several qualita-
tive models for oncogene addiction have been proposed (3, 7, 8).

Evidence for oncogene addiction comes from two sets of observa-
tions: work in experimental mouse model systems and in the clinic
using targeted therapeutics. Through the use of conditional genetically
engineered mouse models, it has been demonstrated that many dif-
ferent tumors exhibit oncogene addiction associated with prolifera-
tive arrest, apoptosis, and/or differentiation/senescence (9–15). More
recently, it has been suggested that other tumor-intrinsic mechanisms
such as the induction of cellular senescence (16) as well as host-
dependent programs, including the shutdown of angiogenesis (17),
may also be important. The relative contribution of these different cel-
lular programs to the mechanism of oncogene addiction remains to be
determined. One possibility is that all of these different cellular pro-
grams converge to influence survival and death signals in a cell (3, 5, 6).

The clinical relevance of oncogene addiction became apparent
through the discovery of effective clinical therapies that target specific
oncogenes. These targeted therapeutics include epidermal growth fac-
tor receptor (EGFR) tyrosine kinase inhibitors (TKIs) such as gefitinib
and erlotinib for non–small cell lung cancer (NSCLC) (18, 19) and
imatinib treatment for chronic myeloid leukemia (20). EGFR muta-
tions are the best predictor of response to EGFR TKIs and improve
ceTranslationalMedicine.org 5 October 2011 Vol 3 Issue 103 103ra99 1
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the progression-free survival (PFS) of patients with advanced NSCLC
who have these EGFR mutations (21–23).

Methods that could predict the efficacy of targeted therapeutics
would be highly useful in the development of new therapies. In ad-
dition, because targeted therapies are very expensive (24) and are
usually only effective to treat a very specific subpopulation of cancer
patients, it is important to develop strategies to rapidly discriminate
when these agents are effective to help a particular patient. The ideal
predictive method would be noninvasive, generate reproducible mea-
surements, and be widely available using technology and clinical skills
generally available to most hospitals. Previous efforts to use clinical
imaging approaches to predict response to therapy have been limited
in their success (25–30). It is still not possible to predict with a high
degree of certainty by using imaging alone which patients will respond
to any particular treatment. Our goal was to develop methods to better
predict which patients will respond to oncogene-targeted treatment.
www.Scien
RESULTS

Interrogating oncogene addiction through quantitative
imaging and in situ analysis
To gain insight into the mechanism of oncogene addiction and to
develop methods that predict when targeted therapies will elicit on-
cogene addiction, we combined quantitative in vivo imaging with de-
tailed immunohistochemical analysis of conditional transgenic mouse
models of lung cancer (13) and lymphoma (9) (Fig. 1). To analyze our
data, we used two complementary mathematical approaches: model-
ing of the dynamics of cellular survival and death signaling based
on ordinary differential equations (ODEs) (Fig. 1A) and prediction of
genotype based on a support vector machine (SVM) classifier trained
with quantitative imaging data (Fig. 1B).

Cancers that display oncogene addiction are complex and can
exhibit the disruption of many cellular programs including cellular
Fig. 1. Multiscale mathematical modeling of oncogene addiction. Two
general data sets were considered: preclinical conditional mouse tumor

mors would exhibit oncogene addiction. For humans, we could predict
from imaging data alone EGFR genotype and longer progression-free
models (green arrows and brackets) and human clinical data (black ar-
rows and brackets). (A and B) Two complementary mathematical
approaches were used (black outlined boxes): (A) ordinary differential
equations (ODE) and (B) support vector machine (SVM) classifiers. (A)
ODE modeling used immunohistochemistry (IHC) and quantitative im-
aging data from mice to describe the relationship between aggregate
survival and death signaling pathways (“Signaling mechanism”) after
oncogene inactivation. (B) We used quantitative imaging from mice
and humans to predict shortly after oncogene inactivation whether tu-
survival (PFS). (C) Aggregate survival and death signaling behavior after
oncogene inactivation. Oncogene-addicted tumor cells may display one
of the scenarios upon oncogene inactivation: (1) a reduction in survival
signals and an increase in death signals, (2) a reduction in survival
signals only without change in death signals, (3) an increase in death
signals only without change in survival signals, (4) an increase in survival
and death signaling but the latter increasing more, or (5) a decrease in
survival and death signaling but with the former decreasing more. The
vertical dashed line indicates time at oncogene inactivation.
ceTranslationalMedicine.org 5 October 2011 Vol 3 Issue 103 103ra99 2
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proliferation, apoptosis, differentiation, and self-renewal, as well as host
programs of angiogenesis and immune surveillance (31). We reasoned
that these programs would both determine tumor formation and pre-
dict tumor regression as a consequence of changes in cell survival and
cell death signaling (2) in several possible ways (Fig. 1C).

To examine these possibilities, we used a transgenic mouse model
of K-rasG12D–induced lung adenocarcinoma that has been shown to
exhibit oncogene addiction. The conditional transgenic model system
of K-rasG12D–induced lung cancer uses the tetracycline-regulatory ON
system (Tet ON), which allows control of target gene expression by
the addition or withdrawal of doxycycline in the drinking water of
www.Scien
transgenic mice (Fig. 2A) (13). Lung-specific expression of K-rasG12D

caused multiple primary lung tumors to develop spontaneously in
a stochastic manner with moderate latency (Fig. 2, B to E; median
latency, 26 weeks). Using the Tet ON system, we could simulate tar-
geted therapy against an oncogene by simply withdrawing doxycycline
to turn the oncogene “OFF” (Fig. 2, F to I) (13, 32). We measured the
kinetics of individual tumor formation and regression in vivo in the
transgenic mice by serial weekly microcomputed tomography (mCT)
imaging, after activation and then inactivation of K-rasG12D (Fig. 2K
and fig. S2, A and B). We focused our subsequent analysis on mac-
roscopic tumors that were growing exponentially and therefore by
Fig. 2. Quantitative analysis of K-rasG12D–induced
lung tumor regression. (A) A mouse line contain-

ing the Clara cell secretory protein (CCSP) promoter driving the reverse tetracycline
transactivating protein (rtTA) is crossed with a line containing K-rasG12D under the control
of the tetracycline-responsive promoter (Tet-op). Addition or withdrawal of doxycycline
(DOX) in CCSP-rtTA/Tet-op–K-rasG12D (CR) mice enables or prevents, respectively, the rtTA
protein from binding and activating the Tet-op promoter. (B to E) K-rasG12D expression in
the lung results in lung tumors (C) radiographically and (D and E) microscopically. (F to I)
K-rasG12D–induced tumors after 6 weeks of K-rasG12D inactivation are absent (F) on gross
examination, (G) radiographically, and (H and I) microscopically (n ≥ 11). Serial mCT
representative axial images are shown (C and G). S, spine; H, heart. Tumors are marked
ceTranslationalMedicine.org 5 October 2011 Vol 3 Issue 103 103ra99 3
by blue arrowheads. Hematoxylin and eosin histology sections show lung tumors or normal lung epithelium (D, E, H, and I). (J and K) Tumors were tracked
prospectively with serial mCT. Tumor progression and tumor regression after oncogene inactivation were quantified (red pixels) in three dimensions. (L and
M) Proliferative index (PI) and apoptotic index (AI) in CR lung tumors after turning K-rasG12D “OFF” as analyzed by quantization of Ki-67 and cleaved
caspase 3 by IHC, respectively. (E, I) Scale bar, 50 mm; (D, H) Scale bar, 200 mm.
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definition are adenocarcinomas (13, 33). After oncogene inactivation
in this model system, K-rasG12D–induced lung tumors regress com-
pletely within 4 weeks, both radiographically and histologically, as
previously described (Fig. 2, F to J, and video S1) (13, 32).

To determine the behavior of prosurvival and prodeath signaling
factors after oncogene inactivation in vivo in this transgenic model,
we measured over time in lung tumor cells the phosphorylation sta-
tus of specific prosurvival and prodeath effector molecules by immu-
nohistochemistry (IHC) (Figs. 1A and 3). The primary lung tumor
cells demonstrated high steady-state levels of phosphorylated Erk1/2
(extracellular signal–regulated kinase 1 and 2), Akt1, Stat3 (signal trans-
ducer and activator of transcription 3), and Stat5 prosurvival effectors
before K-rasG12D oncogene inactivation (Fig. 3, A and B, and fig. S1,
A and B, blue outlines or blue bars), as measured by IHC. However,
as early as 2 days after oncogene inactivation in the primary lung tu-
mors, these prosurvival molecules were inactive or no longer phos-
phorylated (Fig. 3, A and B, and fig. S1, A and B). Conversely, the
putative prodeath effector p38 (34) (Fig. 3, red outline or red bars)
was not phosphorylated initially during the K-rasG12D oncogene inhi-
bition time course (day 0), but phospho-p38 accumulated at day 2,
peaked at days 5 to 7, and then eventually decreased in a delayed fash-
ion to a low basal level by day 10 (Fig. 3, A and B). Thus, data from
primary lung tumor studies in situ suggested that, after K-rasG12D
www.Scien
oncogene inactivation, there was a rapid attenuation of prosurvival
signaling molecules followed by a burst of prodeath signaling and
then a lag or differential attenuation in prodeath mediators.

Mathematical modeling of oncogene addiction
in lung cancer
There are several possible interactions between aggregate survival and
death signaling upon oncogene inactivation (Fig. 1C). Our results
appeared to be most consistent with two signaling scenarios (Fig.
1C, panels 1 and 5). To distinguish further which scenario was most
likely, we generated an ODE model based on the statistical represen-
tation of the heterogeneous intracellular signals within different cells
across the entire tumor. We modeled tumor growth and regression as
being primarily dependent upon a balance of aggregate survival and
death signals that could account for temporal patterns in tumor
growth before and after K-rasG12D oncogene inactivation.

Thus, tumor growth is governed by the balance between aggregate
survival [S(t)] and death [D(t)] signals. At each time point, cell death
and proliferation were simultaneously observed within a tumor, and
thus, a deterministic response to a single systemic balance of survival
and death signals was insufficient to model the observed response.
This heterogeneity of cellular responses was modeled with a normal
distribution (log-normal distribution produced virtually identical
ceTranslationalMedicine.org 5
results) on the difference between survival
and death signals, leading to one of three
mutually exclusive cellular states: cell
proliferation, cell death, or homeostasis/
quiescent (Fig. 4, A and B). Two threshold
values on the signal difference determined
which of the three separate programmed
responses was chosen. The homeostatic/
quiescent population was defined as non-
cycling cells and thus may contain cells in
G0, differentiated cells, senescent cells, dor-
mant cells, and/or cancer stem cells. Then,
we further developed an ODE to model
the change in cell number because of pro-
liferation and apoptosis (Fig. 4C) using lo-
gistic functions to represent the timecourse
of aggregate survival and death signals re-
sulting fromoncogene inactivation (Fig. 4E).

Proliferation and apoptosis upon on-
cogene activation and inactivation were
characterized by proliferative (PI) and
apoptotic (AI) indices via Ki-67 and cleaved
caspase 3 IHC. Measurements were made
from in situ lung tumor samples at vari-
ous time points during the first 10 days
after oncogene inactivation (Fig. 2, L and
M, and fig. S2, C to E). This time period
was chosen because it corresponded to the
most rapid tumor regression by volumetric
analysis from mCT (fig. S2, A and B).

We used the quantitative radiologic and
biologic data described above (Fig. 2, K to
M, and fig. S2) to estimateparameter values
for the ODEmodel including parameters
of the kinetics of aggregate survival and
Fig. 3. Differential attenuation of prosurvival and prodeath signaling factors during regression of
K-rasG12D–induced lung tumors in vivo. (A) Lung tumors from CCSP-rtTA/Tet-op–K-rasG12D (CR) mice with

K-rasG12D oncogene activated (or “ON”) and at time points after oncogene inactivation (or “OFF”) were
evaluated for phosphorylation of signaling pathway mediators by IHC. Representative examples show
prosurvival pathways mediated by Erk1/2 and Akt1 (blue box) are phosphorylated in lung tumors when
K-rasG12D is ON, but are dephosphorylated after turning K-rasG12D OFF (days 2 to 3). Prodeath pathway
(red box) is dephosphorylated with delayed kinetics (day 10). (B) IHC was scored as negative, low (<50%
positive cells), or high (>50% positive cells) for tumors.
October 2011 Vol 3 Issue 103 103ra99 4
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death signaling, which were not observed directly. The resultant opti-
mization showed an excellent fit with an average percent error within
6.2% [root mean square error (RMSE)] between the model fit and the
real data (Fig. 4D and Table 1).
www.Scien
To examine whether our ODE model of aggregate survival and
death signals could accurately describe the dynamics observed be-
tween intracellular prosurvival and prodeath factors observed in vivo
from IHC (Fig. 3), we solved for survival [S(t)] and death [D(t)] signal
ceTranslationalMedicine.org 5
intensity and then plotted over time (Fig.
4E). This revealed three marked findings.
First, K-rasG12D oncogene addiction could
be explained almost entirely by the balance
between aggregate survival and death sig-
nals as demonstrated by the excellent agree-
ment between the actual radiologic-biologic
data (tumor volumes, PI, and AI) and the
model-fitted function (Fig. 4D). Second, it
surprisingly predicted the almost com-
plete reduction of both aggregate survival
and death signaling after oncogene in-
activation. Last, there was a notable delay
for the final degradation of the death sig-
nal compared to the survival signal (Figs.
1C, panel 5, and 4E).

Although the aggregate survival and
death signals have yet to be linked with
single individual markers, we examined
a variety of known prosurvival and pro-
death factors by IHC (Fig. 3). The model
predicted the initial decline of the aggre-
gate survival signal [S(t)] to occur at day
4 after K-rasG12D inactivation (Fig. 4E),
similar to what was experimentally ob-
served by days 2 to 3 with the prosurvival
factors (Fig. 3, A and B, and fig. S1). Sim-
ilarly, for the death signal [D(t)], the
model predicted attenuation of the death
signal after K-rasG12D inactivation to begin
at day 13, whereas tumors in situ showed
decline of the prodeath factor to occur by
day 10. Hence, an important implication
of the results from our ODE model is
that they support the contention that on-
cogene addiction is a direct consequence
of the differential attenuation of aggre-
gate survival and death signals that we
observed in vivo (Fig. 1C, panel 5).

Validation of the ODE model
The robustness of the ODE model to dif-
ferent sets of data was validated in several
ways. First, we confirmed by a holdout
analysis of the model by rotating the re-
moval of one contributing data set from
the optimization (tumor volumes, PI, or
AI) and then predicting the aggregate
survival and death signals. This analysis
yielded essentially identical results (fig.
S3, A to C) and confirmed that our model
was particularly robust. Next, to validate
the reproducibility of the ODE model, we
performed both bootstrapping (fig. S3D)
Fig. 4. Mathematical modeling of K-rasG12D–induced lung tumors reveals differential attenuation of sur-
vival and death signals. (A) Distribution between three cellular decisions directed by the balance of

aggregate survival [S(t)] and death signals [D(t)]. The percentage of cells in each of these states [death
(D), homeostasis (H), and proliferation (P)] is determined by thresholds, n and m, and stochastic variability
represented by N0,1 (standard normal distribution). (B) The distribution changes over time with its mean
(purple line) centered at S(t) − D(t), shifting the percentage of cells in the three states. (C) The first ODE
represents changes in tumor cell number because of the increase in cells to the right of threshold m and
the decrease in cells to the left of threshold n. F is the standard normal cumulative distribution function.
The second and third equations represent the PI and AI measured by IHC as a balance of input signals. Tp and
Ta are the duration of cell proliferation and apoptosis, respectively. tp and ta are the duration of detectability
of cell proliferation and apoptosis by IHC, respectively. (D) Overall, the model fit well to the original tumor
volume data and IHC for PI and AI. (E) The logistic functions, S(t) and D(t), and optimized parameters
showed that survival signals were short-lived after oncogene inactivation compared to the death signals.
October 2011 Vol 3 Issue 103 103ra99 5
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and sensitivity analysis (fig. S3, E to I), which yielded highly consistent
results. Our ODE (Fig. 2C) involved 12 parameters in total (3 survival,
3 death, 4 cell cycle duration, and 2 thresholds) and 245 total obser-
vation points (202 mCT scans and 43 IHC panels) (Table 1). All of the
statistical validation suggested that the results from our mathematical
ODE model were both robust and reproducible.

Next, we tested if our ODE model could generalize to a different
transgenic mouse tumor model system and make similar predictions
regarding the dynamics of survival and death signals after oncogene
inactivation. For this purpose, data were used that involved a different
imaging modality [bioluminescence imaging (BLI)] and the examina-
tion of a different type of cancer (lymphoma) and measured the re-
sponse to the inactivation of a different oncogene (MYC) (17). Using
the ODE model, as described above (Fig. 4C), modified for optimiza-
tion with BLI data (fig. S4, C and D; RMSE, 7.0 to 12.6%), we pre-
dicted an identical relationship between aggregate survival and death
signals between the two different data sets from the transgenic mouse
models of lung cancer and lymphoma (compare Figs. 4E and 5, D to
F). Thus, our ODE model can be generalized to two imaging modal-
ities: the inactivation of other oncogenes and the examination of dif-
ferent types of cancer.

Impact of genetic changes in survival and death
signals of oncogene addiction
Our ODE model predicted that the modulation of aggregate survival
and/or death signaling had predictable effects on tumor regression
upon oncogene inactivation. To directly test this in our transgenic mouse
model of MYC-induced lymphoma, we perturbed the pathways by
introducing the constitutively activated forms of Stat3 (Stat3-d358L)
(35) and Akt1 (myr-Akt1) (36), and also by looking at the effect of loss
of p53 (p53−/−) (17), in our model ofMYC-induced lymphomagenesis
(Fig. 5 and fig. S4). As predicted, the introduction of these mutations
into MYC-induced lymphomas had differential effects on apoptosis
after MYC inactivation in vitro (fig. S4B).

Next, the in vivo effects of these mutations on the ability of MYC
inactivation to induce tumor regression were measured. As predicted
from our ODE model, the magnitude of the effect of prosurvival
(Stat3-d358L and myr-Akt1) and prodeath (p53−/−) pathways on cell
death correlated with how quickly tumors regressed after MYC in-
activation (Fig. 5). Specifically, Stat3-d358L had no effect on apoptosis
(83% apoptotic cells versus 81% for control; P = 0.17 by Mann-Whitney
t test; Fig. 5J and fig. S4B) and no effect on tumor regression (Fig. 5A).
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Conversely, myr-Akt1 reduced apoptosis modestly (63% apoptotic
cells versus 81% for control; P = 0.008 by Mann-Whitney t test; Fig. 5J
and fig. S4B) and caused a modest delay in tumor regression (Fig. 5B).
Finally, the loss of p53 produced the most marked effect on apoptosis
(24% apoptotic cells for p53−/− versus 81% for control; P = 0.0005 by
Mann-Whitney t test; Fig. 5J and fig. S4B) and abrogated tumor re-
gression so markedly that tumors were no longer oncogene-addicted
(Fig. 5, C and J).

Then, we examined how these mutations resulted in changes in
aggregate survival and death signals as predicted by our ODE model
(as for Fig. 4). We solved for survival [S(t)] and death [D(t)] signal
intensities over time (Fig. 5, G to I, and fig. S4, C to G). As predicted,
Stat3-d358L and myr-Akt1 containing lymphomas that behaved in an
oncogene-addicted fashion still demonstrated a continuous excess of
death signal compared to survival signal during tumor regression (Fig.
5G and H). Furthermore, for myr-Akt1 tumors (Fig. 5J and fig. S4B),
the predicted survival signal took longer to decay than control tumors
or Stat3-d358L tumors (3 versus 2 days; Fig. 5, D to H). Last, the loss
of p53 had the most marked effect on the inhibition of apoptosis (Fig.
5J and fig. S4B), resulting in the absence of tumor regression (Fig. 5C)
and the loss of the differential decay between aggregate survival and
death signals such that the two signals crossed over each other (Fig.
5I). Hence, our ODE model could predict how changes in survival and
death pathways influenced the ability of oncogene inactivation to elicit
oncogene addiction.

Recently, MYC inactivation inMYC-induced lung cancers has been
shown by us to fail to induce complete tumor regression (32) because
of secondary activating events in K-ras and K-ras and associated path-
ways (32, 37) (fig. S5). We fitted our mathematical model using data
from the MYC-induced lung tumors as had been performed for the
K-rasG12D–induced lung tumors (Fig. 6A and Table 1). When we
solved for aggregate survival [S(t)] and death [D(t)] signals over time,
the model fit was very poor (Fig. 6A), thereby demonstrating that our
ODE model worked well as predicted on oncogene-addicted tumors but
not for non–oncogene-addicted tumors. Thus, when oncogene in-
activation is not associated with oncogene addiction, tumor growth
kinetics are unable to be explained by differential attenuation of
aggregate survival and death signals, as we also observed for the loss
of p53 in our model of MYC-induced lymphoma (Fig. 5I).

Prediction of oncogene addiction
We compared the K-rasG12D–induced lung tumor system (oncogene-
addicted) (13) to ourMYC-induced lung tumor system (non–oncogene-
addicted), but because the MYC tumors had tumor signaling dynamics
with complexity beyond our ODE model, we used a different ap-
proach. We used a machine learning approach, SVM, to determine
whether the early tumor growth and regression kinetics alone con-
tain enough information to accurately classify the oncogene-addicted
genotype versus non-addicted genotype. The K-rasG12D (fig. S2, A
and B) and MYC (fig. S5) mCT-based kinetic regression curves were
used to train an SVM algorithm, which is a supervised learning
method for classification of data sets (Fig. 7A) (38, 39). Leave-one-
out cross-validation was used to estimate the sensitivity, specificity,
and overall accuracy of the SVM in classifying oncogene-addicted ver-
sus non–oncogene-addicted genotypes (Fig. 7, A and B, and fig. S6A).
The SVM was 100% accurate at classifying an oncogene-addicted
genotype (K-rasG12D) over a non–oncogene-addicted genotype (MYC)
using only the first three serial weekly mCT scans after a simulated
Table 1. Multiscale data used to optimize the mathematical model. IHC,
immunohistochemistry; IF, immunofluorescence; NA, not applicable;
ND, not done.
Data type
 K-rasG12D

MYC
(lung)
MYC
(lymphoma)
Tumor number scored
 20
 8
 21
Cleaved caspase 3
IHC panels scored
24
 27
 ND
Ki-67 IF panels scored
 19
 35
 ND
mCT volumes scored
 202
 87
 NA
Bioluminescence images scored
 NA
 NA
 70
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oncogene-targeted therapy out of 6 to 10 weeks total to train the SVM
(fig. S6, B and C).

Then, using imaging data from only the first two weekly scans after
oncogene-targeted therapy, the SVM could classify K-rasG12D and
MYC genotypes with 100% sensitivity and 87.5% specificity (fig. S6,
B and C). Even after training the SVM with a more heterogeneous
data set where MYC- and double MYC/K-rasG12D–induced tumors
were grouped together (non–K-rasG12D) against K-rasG12D–induced
www.Scien
tumors (Fig. 7B), the SVM was still able to accurately differentiate be-
tween K-rasG12D and non–K-rasG12D genotypes (Fig. 7C and fig. S6D).
After only 2 weeks of oncogene inactivation, the SVM could classify
K-rasG12D versus non–K-rasG12D tumors with 95% sensitivity and 86%
specificity. The sensitivity improved to 100% and specificity improved
to 93% for K-rasG12D versus non–K-rasG12D tumors, respectively, after
4 weeks of imaging data (fig. S6D). Thus, an SVM classifier tool trained
with quantitative CT imaging data can classify oncogene-addicted
Fig. 5. Mathematical modeling ofMYC-induced lymphomas with BLI shows
that genetic perturbations of aggregate survival and death pathways can im-

were then generated from the optimizations for (D to F) control cell lines, (G)
Stat3-d358L, (H) myr-Akt1, and (I) p53−/− derivative lymphomas. The 6780
pede tumor regression afterMYC inactivation in vivo. (A and B)MYC-induced
lymphomaswith control constructs;mutant active forms of (A) Stat3-d358L or
(B)myr-Akt1. (C)MYC-induced lymphoma derived from a p53−/− background.
MYC-induced lymphoma–transplanted tumors were tracked with BLI for
growth and regression afterMYC inactivation (day 0) in vivo (A to C). Resultant
BLI data were used to optimize the mathematical model as in Fig. 4, A to C,
modified for use with BLI (fig. S4). (D to I) The survival and death signal plots
MYC-induced lymphoma line was used as a control for the p53−/− derivative
because they had similar basal luciferase activities in vivo. (J) MYC-induced
lymphoma–transplanted tumors with vector control, Stat3-d358L, or myr-
Akt1, or isolated fromap53−/−backgroundwere left untreatedor treatedwith
doxycycline (dox) for 2, 3, or 4 days. Samples were harvested at each time
point, and lysates were blotted for expression of c-Myc, proliferating cell
nuclear antigen (PCNA), cleaved caspase 3, and a-tubulin (loading control).
ceTranslationalMedicine.org 5 October 2011 Vol 3 Issue 103 103ra99 7
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versus non-addicted genotypes and thus predict the tumor response
to oncogene inactivation.

Predicting oncogene addiction in human lung cancers
We considered that our SVM approach could be useful to predict
in human patients with lung cancer if they will clinically respond to
a targeted therapy. To evaluate this possibility, we analyzed patients
from a prospective clinical trial who had received the EGFR inhib-
itor erlotinib for the treatment of lung adenocarcinoma (40). EGFR
mutant lung tumors are reported to behave in an oncogene-addicted
fashion after EGFR-targeted therapy, and EGFR mutation status is
now considered to be the best surrogate for prediction of tumor re-
sponse and PFS for lung cancer patients undergoing EGFR TKI treat-
ment (18, 41).

We quantitatively analyzed CT scan imaging data from the pa-
tients for whom the status of EGFR mutations was known and for
whom paired tumor measurements were available before initiation
of erlotinib and then again at the early time point of 4 weeks (40).
Then, using the SVM classifier generated from the analysis of our
transgenic mice as a reference, we correctly assigned the EGFR geno-
type and thus clinical response of 93% of the patients with a positive
predictive value of 100% and a negative predictive value of 91% after
only 4 weeks of targeted therapy (Fig. 7D). Most importantly, we
could predict longer PFS of patients directly from the CT data alone
(Fig. 7E; P = 0.05, log-rank analysis). Note that from the mouse SVM
data, we could predict genotype as early as 2 weeks after targeted
therapy (Fig. 7, B and C). We believe that by using our SVM model,
we will be able to predict both EGFR genotype and PFS earlier than
4 weeks after erlotinib treatment.
www.Scien
DISCUSSION

We have combined direct in vivo analysis of conditional transgenic
tumor mouse models and highly quantitative imaging methods to dem-
onstrate that aggregate survival and death signals interact and can be
used to predict oncogene addiction. Our results may have important
translational implications by enabling one to predict which therapeu-
tics are most likely to elicit oncogene addiction during therapeutic de-
velopment and therapeutic efficacy in the clinical setting. We show
that our ODE model can account for coactivating mutations, includ-
ing Stat3-d358L, myr-Akt1, and p53−/−, by modeling their effect on ag-
gregate survival and death signals independently and as a function of
time. This provides a possible scalable paradigm to model additional
genetic and epigenetic alterations. This could allow early detection of
loss of oncogene addiction to allow moving rapidly to alternative ther-
apeutic approaches based on the SVM classification strategy. Finally,
we illustrate that quantitative imaging algorithms can be applied to
existing CT imaging to assist in the personalized management of lung
cancer patients treated with anti-EGFR therapies.

Apriori, therewere severalways inwhich aggregate survival anddeath
signaling pathways could behave after oncogene inactivation (Fig. 1C).
We developed a quantitative ODE model that could be used to define
and predict the behavior of tumor cells upon oncogene inactivation.
Using additional quantitative methods that included serial imaging and
in situ measurements of proliferation and apoptosis, our ODE model
predicted that intracellular aggregate survival signals decay rapidly at a
much earlier time point than death signals after targeted therapy. Our
ODE model provides a description of the aggregate survival and death
signals thatwould not necessarily be expected by examination of individual
Fig. 6. Mathematical model of differential attenuation is not applicable
to non–oncogene-addicted MYC-induced lung tumors. Model overfitting
does not occur when applied to the non–oncogene-addicted MYC-
induced lung tumor model, where differential attenuation is not ex-
pected to explain growth kinetics. (A) Model fitting was performed
for the volume data (right panel), proliferation (Ki-67; left panel), and
apoptosis (cleaved caspase 3; middle panel). Note that these data
showed a poor fit using the same mathematical equation for oncogene-
addicted or K-rasG12D–induced lung tumors. The averaged RMSE was 31%:
8% for volume fit, 18% error for PI fit (Ki-67), and 67% for AI (cleaved
caspase 3) fit. (B) MYC inactivation in lung tumors is not associated with
differential attenuation of aggregate survival and death signals. The plots
shown were generated with the same mathematical model as described
in detail in Fig. 4 using the data (V, PI, and AI).
ce
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signaling molecules. Thus, as expected, there are some discrepancies
between our ODEmodel and changes in activation of individual signal-
ing proteins. Initially, after oncogene inactivation, there was no apparent
phospho-p38 by IHC staining, but by days 2 to 5 after oncogene inac-
tivation, there was an increase in staining for phospho-p38 (Fig. 3A). It
is known that K-ras regulates the prosurvival effector molecules Erk1/2
and Akt1 that in turn negatively regulate p38 phosphorylation status,
and thus, we expected low initial phospho-p38 levels (42–44).
www.Scien
Our results illustrate that oncogene addiction is associated with a
decrease in both aggregate survival and death signaling, but that
death signals extinguish more gradually (fig. S7). Our results are con-
sistent but not identical with previous reports based on qualitative in
vitro observations in tumor-derived cell lines, which have argued
that “differential” attenuation of survival and death signals could ac-
count for oncogene addiction (5, 6). There are several possible rea-
sons why our results differ slightly from these experiments. The most
Fig. 7. Modeling imaging data from the regression of human lung tumors
treated with targeted therapy can be used to classify genotype. (A) Quan-

K-rasG12D tumor volumes over time in orange and green, respectively,
scaled for differences between mouse and human tumor doubling times
titative imaging data after simulated oncogene therapy for K-rasG12D– and
non–K-rasG12D–induced lung tumors are used to train an SVM algorithm. (B)
An illustration of SVM mapping the original data set in a higher-dimensional
space, where a maximal separating hyperplane is constructed that best
separates the data points between two different genotypes, K-rasG12D and
non–K-rasG12D, for classification. (C) Receiver operating characteristic curves
show the accuracy of the SVM technique in predicting the oncogene-
dependent genotypes based on tumor volumes obtained from different
lengths of time after oncogene-targeted therapy. (D) K-rasG12D and non–
(oncogene inactivation at day 0). The black and cyan box plots with error
bars represent tumor responses from patients with EGFR mutations (cyan)
and wild-type EGFR (black) measured 4 weeks after targeted therapy with
erlotinib. Mouse K-rasG12D and non–K-rasG12D tumors behave similarly to
human tumors with EGFRmutations and wild-type EGFR, respectively, after
targeted therapy. This model had an 80% (12 of 15) sensitivity and 100%
(28 of 28) specificity for assigning EGFR mutation status. (E) Kaplan-Meier
plots of lung cancer patients based on quantitative imaging response at
4 weeks predicted improved PFS (P = 0.046).
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obvious is that in contrast to our in vivo study, these previous studies
were conducted entirely using cell lines in vitro. However, our model-
ing is not necessarily mutually exclusive from other proposed models
of oncogene addiction (3, 7, 8) that propose mechanisms involving
dysregulation of the intracellular signaling or “wiring” in cancer cells
(3), oncoprotein-specific negative feedback loops (45), and/or the re-
constitution of normal cellular checkpoint programs (7).

We acknowledge that neither our ODE model nor our statistical
SVM classifier model incorporates cellular or host programs that
are also presumed to be important for tumorigenesis including angio-
genesis, genetic instability, or immune function (1). Indeed, our own
previous work has specifically identified that angiogenesis and cellular
senescence are important mechanisms of oncogene addiction (17, 46).
How can we reconcile that a model that incorporates survival and
death signals but does not directly include many of these other pro-
cesses is still capable of describing oncogene addiction? We infer
that aggregate survival and death signals may be an integration of
many of these other biological programs that ultimately affect prolif-
eration versus cell death, as has been suggested (2, 47). Because our
ODE model was generated by analyzing in vivo data, it should incor-
porate these other biological programs via their effects on survival and
death signaling. Indeed, precisely because our analysis was performed
with data that were obtained in vivo, our measurements should have
incorporated the effects of the tumor microenvironment and we be-
lieve accounted for the resulting heterogeneity. Also, although our
ODE model does explicitly consider as a possibility that upon onco-
gene inactivation tumor cells can become homeostatic, which would
include cells that differentiate, undergo senescence, or become dormant,
none of the conditional mouse tumor models we used in our study
displays homeostasis as the primary mechanism for oncogene addic-
tion. Thus, we must consider the possibility that our ODE model may
be restricted to tumors that use apoptosis as the primary mechanism
for tumor regression after oncogene inactivation. Finally, we recognize
that the incorporation of other biological variables is likely to further
improve and refine our ODE and SVM classifier models and their pre-
dictive potential.

A potential limitation of our study is that we used mouse tumor
models that cannot completely recapitulate human disease. However,
we have gone to significant efforts to use mouse models that have been
shown to approximate closely human tumors. Moreover, mouse
K-rasG12D–induced lung tumors behave very similarly after oncogene
inactivation (13, 32) or treatment with phosphatidylinositol 3-kinase
(PI3K) and mitogen-activated or extracellular signal–regulated pro-
tein kinase kinase (MEK) small-molecule inhibitors (15) compared
to EGFR-mutated human lung adenocarcinomas after erlotinib treat-
ment (48). Similarly, our transgenic model of lymphoma (9) has been
widely used as representative of humanMYC-induced T cell acute lym-
phoblastic leukemia. Therefore, our mouse models appear to be useful
to extrapolate tumor behavior that occurs in humans.

Our general approach of using quantitative imaging may be useful
to develop new therapeutics as well as to assist in therapeutic decisions
for treating cancer patients. Although EGFR mutation status is a
strong predictor of therapeutic response and PFS in lung cancer pa-
tients treated with anti-EGFR–targeted therapy (18), it is not always
possible to sequence EGFR mutations (49). The technology to screen
for EGFR mutations is not available in all centers, and performing a
biopsy to obtain suitable material may result in increased morbidity to
the patient. In contrast, noninvasive quantitative imaging, using struc-
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tural [CT or MRI (magnetic resonance imaging)] or functional molec-
ular imaging [PET (positron emission tomography)], can be more widely
applied to patients and could be easily translated to most hospitals with-
out the resources of a sophisticated molecular screening core. In gen-
eral, diagnostic radiologists today evaluate imaging studies such as CT
scans in a qualitative fashion; therefore, quantitative algorithms have
the capability of performing better and minimizing errors. Automated
evaluation of CT scan data after anti-EGFR–targeted therapy for lung
cancer has shown some promise. Our results using an SVM classifier
trained with quantitative CT imaging data (Fig. 7 and fig. S6) provide
a proof of principle that similar approaches may assist in the manage-
ment of lung cancer patients treated with anti-EGFR therapies and may
also help to accelerate the preclinical and clinical validation of other
targeted therapeutics. Our preclinical SVM results suggest that it may
be possible to identify patients carrying EGFRmutations after as little as
2 weeks of targeted treatment.

Our work demonstrates how transgenic mouse models may be
useful to gain insight into the mechanism of oncogene addiction so
that it may be possible to more rapidly predict in human patients when
targeted therapeutics will be effective. However, we recognize that using
additional imaging modalities could further improve upon the results
obtained with only structural imaging. Finally, our ability to model ac-
curately the behavior of both lung cancer and lymphoma models sug-
gests that quantitative imaging algorithms, if modified appropriately,
could assist in the clinical management of a diverse number of other
malignancies.
MATERIALS AND METHODS

Transgenic mice
The TRE-MYC transgenic line generated for these experiments was de-
scribed previously (9). The CCSP-rtTA and Tet-op–K-rasG12D trans-
genic lines were provided by J. A. Whitsett (Cincinnati Children’s
Hospital) and H. Varmus (Memorial Sloan-Kettering Cancer Center,
New York), respectively. Mice were mated and screened by polymerase
chain reaction (PCR) as below. CCSP-rtTA/TRE-MYC (termed MYC
or CM), CCSP-rtTA/Tet-op–K-rasG12D (termed K-rasG12D or CR), and
CCSP-rtTA/TRE-MYC/Tet-op–K-rasG12D (termed CMR) expression
was activated in the lung lines by administering doxycycline (Sigma)
in the drinking water weekly (2 mg/ml) starting at the age of 3
to 4 weeks. All procedures were performed in accordance with Ad-
ministrative Panel on Laboratory Animal Care protocols, and animals
were housed in a pathogen-free environment.

Oncogene inactivation
Transgenic mice were followed by weekly computed tomography scans
for a total of >16 weeks. Oncogenes were inactivated in the CM, CR,
and CMR cohorts by removing doxycycline from the animals’ drinking
water before mice became moribund with tumor or when tumors were
visualized by mCT.

PCR genotyping
DNA was isolated from mouse tails with the QIAprep DNeasy kit
(Qiagen) in accordance with the manufacturer’s directions. The CCSP-
rtTA segment was detected with the following primers: CCSP-F
(5′-ACTGCCCATTGCCCAAACAC-3′) and CCSP-R (5′-AAAATCT-
TGCCAGCTTTCCCC-3′) [yielding a 440–base pair (bp) product]. The
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TRE-Myc construct was detected with the following primers: Myc-F (5′-
TAGTGAACCGTCAGATCGCCTG-3′) and Myc-R (5′-TTTGATGAA-
GGTCTCGTCGTCC-3′) (yielding a 450-bp product). Tet-op–K-ras was
screened as described previously (13). DNA was amplified with the fol-
lowing PCR protocol: 94°C denaturation for 2 min followed by 35 cycles
of 94°C for 15 s, 59°C annealing for 30 s, and 72°C for 30 s, followed by a
5-min extension at 72°C. PCR products were resolved on a 1.5% gel.

Western blot analysis
Western blot analysiswas performedwith conventional techniques. Tis-
sues or cells were disrupted, and protein was isolated with a tube ho-
mogenizer in radioimmunoprecipitation assay lysis buffer. Equal protein
was loaded in each lane, as quantified by the BCA (bicinchoninic acid)
ProteinAssay (Pierce). Proteinswere electrophoresed on 8 to 10% tris-HCl
polyacrylamide gels at 100V for 60min and transferred on polyvinylidene
difluoridemembranes at 100V for 60min. Blottingwas then performed
as directed by the antibodymanufacturer. The following antibodies were
used: anti-Stat3 pTyr705 (Cell Signaling), anti-Stat3 (Cell Signaling),
anti–a-tubulin (Sigma), anti-Akt1 pSer473 (Cell Signaling), anti-Akt1 (Cell
Signaling), and anti-Erk1/2 pThr202/Tyr204 (Cell Signaling).

Apoptosis and proliferation assays
Cells were centrifuged, washed twice with phosphate-buffered saline,
fixed in cold 70% ethanol, stained with propidium iodide, and then
analyzed with a FACScan flow cytometer for sub-G1 and S-phase
DNA content for apoptotic and proliferative growth fractions, respec-
tively. Alternatively, cells were stained with annexin V–phycoerythrin
(BD Pharmingen), and apoptosis was measured by flow cytometry.
Data were analyzed with FlowJo (Tree Star Inc.).

Computed tomography
mCTscanswereperformedona customGEHCeXploreRS150 conebeam
scanner, which uses a fixed anode with tungsten target source. Animals
were anesthetized with 2% isoflurane in a nitrogen/oxygen mixture.
Scans were performed at 97-mm resolution with a 70-kV (40mA) beam
to acquire images at 286 radial views over 200° around the subject. Four
frameswere exposed and averaged in eachposition.Datawere corrected
with theGEHC reconstruction utility, and volumeswere generatedwith
the same application, which were viewed with the GEHC MicroView
software. Mice were exposed to 0.194 Gy (absorbed dose of ionizing
radiation) per weekly mCT scan.

Sample population
Weekly mCT scans were collected on 20 K-rasG12D–induced mouse
lung tumors, 8MYC-inducedmouse lung tumors, and 4 CMR-induced
lung tumors. Nodular opacities were designated tumors after retro-
spective review from serial mCT. For the purpose of data analysis, dates
of the scans are referred to relative to oncogene inactivation at day 0.

Mathematical modeling of signal behavior
Our mathematical model represents the temporal changes in tumor
volumes before and after oncogene inactivation as a balance of two
aggregate signals: a survival [S(t)] and a death [D(t)] signal (S1). At
any given time, cells may react to the balance of these signals through
one of three states: proliferation, homeostasis, or apoptosis. We have
defined the homeostatic population of cells as noncycling cells and
thus may contain cells in G0, differentiated cells, or dormant tumor
stem cells.
www.Scienc
SUPPLEMENTARY MATERIAL

www.sciencetranslationalmedicine.org/cgi/content/full/3/103/103ra99/DC1
Materials and Methods
Fig. S1. Attenuation of prosurvival and prodeath signaling pathway mediators during regres-
sion of K-rasG12D–induced lung tumors in vivo.
Fig. S2. K-rasG12D–induced murine lung tumors are oncogene-dependent.
Fig. S3. Validation of the ODE mathematical model for oncogene-addicted tumor behavior.
Fig. S4. Genetic perturbation of prosurvival and prodeath pathways in MYC-induced
lymphomas can impede tumor regression after MYC inactivation in vivo.
Fig. S5. MYC-induced lung tumors are not oncogene-addicted.
Fig. S6. Support vector machine (SVM) trained with quantified imaging data can be used to
distinguish K-rasG12D– and MYC-induced lung tumors.
Fig. S7. Schematic integrating the temporal phospho-IHC in relation to K-rasG12D activation
state.
Video S1. Regression of K-rasG12D–induced lung tumors imaged serially using mCT.
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Supplementary Material 

Materials and Methods 

Mathematical Modeling of Signal Behavior.  Our mathematical model represents the 

temporal changes in tumor volumes before and after oncogene inactivation as a balance of 

two aggregate signals, a survival (S(t)) and a death (D(t)) signal (S1).  At any given time 

cells may react to the balance of these signals through one of three states, proliferation (P), 

homeostasis (H) or apoptosis (A).  We have defined the homeostatic population of cells as 

non-cycling cells and thus may contain cells in G0, differentiated cells or dormant tumor 

stem cells: 

 

Cells within the same tumor undergo different programmatic decisions as is observed 

empirically with simultaneous proliferation and apoptosis within a given tumor.  The 

stochastic difference in cell behavior to input signals at the microenvironmental level is 

modeled using a normal distribution CDF Φ(μ,σ2) on the difference between survival and 

death signals, where μ is the difference between the input signals, and σ  is 1.  To minimize 

the number of unknowns and to eliminate a redundant degree of freedom, we fixed the 
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value σ to 1 and thus, the scale of the signaling intensities is in arbitrary units.  Along with 

the normal distribution sampling over time (Fig. 4B), the percentage of cells in one of the 

three states is also determined by two different thresholds, m and n (Fig. 4B).  We assumed 

that the large numbers of cells in the tumor are independent random variables.  Based on 

the central limit theorem, the re-averaged sum of the large number of random variables will 

be approximately distributed normally with finite mean and variance.  Therefore, we 

assumed normal (or Gaussian) distribution to represent the stochastic difference in cell 

behaviors.  In addition, the primary determinants of the fate of cells in this mathematical 

model are the thresholds m and n.  Therefore, the specific form of distributions used in the 

mathematical model should not greatly change the overall prediction. 
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Comparison of the use of normal distribution versus log-normal distribution reveals that 

both functions produce very similar model fit curves for aggregate survival and death 

signals as shown in the figure above.  Regardless of which functions we use to model the 

behavior of single tumor cells, survival and death signals have similar shapes and decay 

rates.  The model fit well to both of the original tumor volumes using (A) log-normal 

distribution and (B) normal distribution.  The survival signals were short-lived following 

oncogene inactivation compared to the death signals in both (C) log-normal distribution and 

(D) normal distribution.  The figure above shows that the results generated using normal 

distribution and log-normal distribution are almost identical.  For simplicity, we used 

normal distribution in the rest of the paper and for setting up the mathematical model. 

Therefore, the fraction of cells in each state in response to the balance of the input 

signals can be summarized as follows, 

fraction of cells proliferating = ))()((1 tDtSm   

fraction of cells in apoptosis = ))()(( tDtSn      (1) 

fraction of cells in homeostasis = 1 – (fraction of cells in proliferation) – (fraction of 

cells in apoptosis) 

 

The rate of volume change over time observed in microCT images is therefore 

determined by the rates of cell proliferation and cell apoptosis, which are then determined 

by the balance of input signals.  These rates can be determined by dividing the number of 

cells in each state by the amounts of time required for cell proliferation (Tp) and cell 

apoptosis (Ta).  Therefore, our model to explain the temporal changes over time based on 
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the balance of the S(t) and D(t) signals can be mathematically summarized by an ordinary 

differential equation, 

VtDtSn
T

VtDtSm
Tdt

dV

ap

 )))()(((
1

)))()((1(
1

  (2) 

The exponential-like individual tumor volume curves were linearly interpolated in 

semi-log space to minimize interpolation error.  Tumors that were too small to be identified 

on microCT were treated as a single voxel to avoid log(0).  In addition, we modeled the 

behaviors of the survival S(t) and death D(t) signals as sigmoidal curves because the signals 

were found to be in a steady state before perturbing the system (inactivation of the 

oncogene) and we assumed they would reach another steady state some time after 

perturbation.  Therefore, we used the simplest sigmoid function, i.e. the logistic function, 

commonly used in biological models to represent these intracellular signals which can be 

mathematically summarized as follows, 

 
( ) ( )

( ) ,    ( )
1 1b t c f t g

a d
S t D t

e e 
 

 
      (3) 

Parameters b and f were the rates of signal decay, c and g were the amounts of time it takes 

for the signals to begin dropping off, and a and d were the starting intensities of the signals.  

These parameters were estimated using the Levenberg-Marquardt optimization technique 

(S2) to obtain optimal values based on the actual volumetric measurement obtained from 

microCT images and the IHC data described in the following section. 

Equations (4) and (5) also summarizes the temporal rate changes in the IHC data, in 

particular the measurements of cell apoptosis (represented by cleaved caspase 3 and 

TUNEL staining) and proliferation (represented by Ki-67).  These measurements provide a 
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measure of cells in a state of proliferation and apoptosis, quantified as an instantaneous 

percentage.  However, in order to quantify the rate as events per unit time, one must also 

consider the duration for which cells express the markers of proliferation and apoptosis, in 

this case, tp for the duration for which casp-3 is expressed and ta for the duration for which 

Ki-67 is expressed.  For example, a fast rate of events with a shorter duration of 

detectability could have the same instantaneous percentage as a slower rate of events with a 

longer duration of detectability (S3).  Because of a lack of estimates of these durations for 

these particular tumors in the published literature, we have treated these variables as 

unknown parameters that are then estimated along with other model parameters.  Based on 

the same assumption for the signaling model, we reasoned that temporal changes in the 

proliferation and apoptosis rates were also determined by the differences between the 

survival S(t) and death D(t) signals.  Therefore, the relationship between the signals and the 

IHC measurements can be mathematically summarized by the following equations:  

PI = (fraction of cells in proliferation)
p

p

p

p

T

t
tDtSm

T

t
 )))()((1(  (4) 

AI = (fraction of cells in apoptosis)
a

a

a

a

T

t
tDtSn

T

t
 )))()(((   (5) 

where PI is the proliferation index from Ki-67 IHC data, AI is the apoptosis index from 

cleaved caspase 3 and TUNEL staining IHC data, tp and ta were the durations that 

proliferation and apoptosis, respectively, could be detected by IHC.  A couple of 

assumptions were made in the modeling, 1) PI and AI were at a stable rate before 

oncogene inactivation, and 2) the asymptotic behavior of PI continued beyond 10 days of 

oncogene inactivation for K-rasG12D-induced lung tumors (Fig. 2L).  Parameters in 
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equations (2), (4), and (5) were estimated using the Levenberg-Marquardt (LM) algorithm 

on combined data of volumetric measurements of microCT images and the Ki-67 and 

cleaved caspase 3 measurements.  The task of the LM algorithm can be stated as follows: 

given three sets of data points, Vi (normalized volume), Pi (PI) and Ai (AI), determine all 

parameters β={a,b,c,d,f,g,ta,tp,Ta,Tp,n,m} of the model curve f(x,β) to minimize the error 

function E(β) in equation 6. ˆ V i(), ˆ P i() and ˆ A i()  are the fitted values of normalized 

volume, PI and AI for a given set of parameter values β. To ensure equal weighting 

between volume, PI and AI datasets, all three were normalized to their maximum value 

and mean values were used instead of sums.  

E() 
1

nv

( ˆ V i() Vi)
2

i1

nv




1

maxPi

1

np

( ˆ P i()  Pi)
2

i1

n p




1

max Ai

1

na

( ˆ A i()  Ai)
2

i1

na



    (6) 

 

Assessment of the Robustness of the Model.  To validate our proposed mathematical model, 

we first performed a hold-out like validation analysis on these datasets, V, PI and AI in 

order to ensure that there was no overlap between training and test data.  We assumed the 

duration of cell proliferation and apoptosis, Ta, Tp, detectability of cell proliferation and 

apoptosis by IHC markers, ta, tp, and thresholds that determine cell stochasticity, n, m, 

remain the same for all oncogene-addicted tumors.  We therefore used the values of these 

parameters from all 20 oncogene-addicted tumors estimated using LM optimization 
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algorithm and kept them fixed throughout this part of the experiment.  Different 

combinations of two of the three datasets, {(V,PI), (V,AI), (AI,PI)}, were used for parameter 

optimization to assess whether the estimated signal curves would be alike.  Each 

permutation of the hold-out-like validation experiments also resulted in a delayed decay of 

the aggregate death signal relative to the survival signal (fig. S3A-C). 

In addition, we utilized bootstrap statistical method to estimate the sampling 

distribution and the bias and variance of the optimization algorithm by re-sampling with 

replacement from the original sample.  This is done to validate the robustness of our 

mathematical model to the data itself using random subsets of the data and to determine the 

stability of the estimated parameters. 

The bootstrap algorithm can be formally described as follows.  

For n = 1 to 10,000, 

1) For i = 1 to 20, 

a. Randomly select one tumor in the dataset with replacement using 

uniform distribution. 

2) Combine the volume data from the selected tumors with the IHC data to obtain 

H.  Repeats in the tumors selected in step 1 are allowed. 

3) Estimate all parameters of equation (2) by curve fitting the model with H using 

the LM optimization technique and the objective function described in equation 

(6).  

Finally, to obtain the distribution of each parameter and compute the coefficient of 

variation (CV) from the bootstrap experiments. 
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In order to assess the robustness of the proposed method to the values of the estimated 

parameters from the optimization method, we further performed a sensitivity analysis of 

each variable.  We assessed the average RMSE of the model fit to the actual volume, PI and 

AI data within the ± 5% of the estimated value.  The set of our estimated values for all 

parameters is considered stable if all values are at the local minimum of the assessed range.  

Root mean square error (RMSE) for the model fitting of K-rasG12D data was 5% error for 

normalized volume fit, 8.5% error for PI fit (Ki-67), and 5% error for AI fit (cleaved 

caspase 3) or 6.2% average overall.  MYC model fit: RMSE was 8% for volume fit, 18% 

error for PI fit (Ki-67), and 67% for AI (cleaved caspase3) fit or 31% overall. 

The fig. S3D-I show the statistics estimated from bootstrap resampling technique and 

the sensitivity analysis.  Both data showed that our mathematical model is robust to 

variation in the data and to the values estimated from the optimization.  Typically, 

distributions with CV < 1 are considered low-variance, while those with CV > 1 are 

considered high variance. fig. S3D showed that all parameters are low variance except for 

the variables that represent the decay rate of aggregate death signal (variable f) and the time 

when the signal decay is initiated (variable g).  In addition, the sensitivity analysis (fig. 

S3E-I) also demonstrated similar instability in variable g.  These observations demonstrated 

the uncertainty of the duration of the presence of death signal after oncogene inactivation.  

One possible explanation is that, as tumor volumes become progressively smaller, the 

limits of the microCT based volumetric measurements become more apparent such that the 

validity of the absolute time of signal decay is uncertain. 
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Histology and Immunohistochemistry. 

Tissues were fixed in 10% buffered formalin for 24 h and then transferred to 70% 

ethanol until embedded in paraffin.  Tissue sections 5 m thick were cut from paraffin 

embedded blocks, placed on glass slides and hematoxylin and eosin (H&E) staining was 

performed using standard procedures (Stanford Histology Core).  We measured Ki67 and 

TUNEL-staining as described previously (S4).  Antibodies used in our study: c-Myc (C19) 

(Santa Cruz Biotech.), cleaved caspase 3 (Cell Signaling Tech.), phospho-AKT-S497 (Cell 

Signaling Tech.), phospho-Erk1/2-T202/Y204 (Cell Signaling Tech.), phospho-Stat3-Y705 

(Cell Signaling Tech.), phospho-p38-T180/Y182 (Cell Signaling Tech.) and phospho-Stat5-

Y694 (Cell Signaling Tech.).  Samples were dewaxed in xylene and rehydrated in a graded 

series of ethanols.  Antigen retrieval for c-Myc, cleaved caspase 3 and phospho-AKT were 

performed by 14 min microwave irradiation in citrate-based Antigen Unmasking Solution 

(Vector Laboratories, Burlingame, CA, USA).  Antigen retrieval for phospho-Stat3 and -

Stat5 were performed by 14 min microwave irradiation in EDTA, pH 8.0, and antigen 

retrieval for phospho-Erk1/2 and phospho-p38 was performed by10 min incubation in 

Pronase (Roche, Basel, Switzerland).  Endogenous peroxidases were blocked in either 3% 

hydrogen peroxide in deionized water (phospho-AKT, -pErk, -p38 and -pStat3/5) or 0.3% 

hydrogen peroxide in methanol (c-Myc and cleaved caspase 3) for 10-20 minutes.  Non-

specific binding was blocked with 5 -10% goat serum for 60 minutes.  Primary antibodies 

were used at appropriate dilutions (c-Myc, phospho-AKT, -pErk and -p38 at 1:100; cleaved 

caspase 3 at 1:150; phospho-Stat5 at 1:200; and phospho-Stat3 at 1:50) and sections 
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incubated overnight at 4 degrees Celsius.  Detection was conducted using the Vector Elite 

ABC detection kit (Vector Laboratories) with 3,3'-diaminobenzidine tetrahydrochloride as 

the chromogen.  Sections were counterstained with Gill’s hematoxylin (Vector 

Laboratories). 

 

Tumor Segmentation.  

A semi-automated open source image analysis application, ITK-Snap (S5), was 

employed for segmentation of the lung tumors from the microCT images.  The tool uses a 

level set algorithm to semi-automatically delineate tumor from background by expanding a 

level set from a user-defined seed point.  We viewed 2D images in sagittal, coronal and 

transverse views to detect tumors and track them over time.  The segmentation algorithm 

was seeded manually and stopped once the tumor boundary was detected.  The post-

processing of the segmented data provided the voxel counts, the volume (in cubic 

millimeters) and displayed the shape of the segmented structure.  Matching tumors across 

time points was performed manually by simultaneous viewing of the serial data.  This 

volume information was then used for analysis of the temporal changes in lung tumor 

nodules.  MicroCT imaging has been shown to correlate with the number and volume of 

murine lung tumors found on necropsy (S6). 

 

Normalization. 

Peak tumor volumes at the time of oncogene inactivation had significant variability 

due to the subjective determination of when the oncogene was inactivated and also due to 

the variability in tumor sizes in the same mouse.  However, simple normalization by peak 
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tumor volume was artificially biased toward a single time point due to zero variance at time 

zero (peak) and exaggerated variance at large negative and positive times.  Instead, we 

weighted each time point equally in the normalization process.  Due to the exponential-like 

growth and regression pattern observed in volume data, two straight lines were fitted by 

least squares to tumor volume in semi-log space, one for the growth phase and one for the 

regression phase.  The value at the intersection of the two straight lines was then used to 

normalize the volume for each tumor time series (fig. S2A).  Normalized tumor volumes at 

each scan time were averaged across all tumors to obtain a general trend of the growth and 

regression patterns leading to much more consistent variance in tumor volume 

measurements across time. 

 

MYC-induced Lymphoma Mouse System. 

MYC-induced lymphoma cells expressing luciferase were transduced using 

retrovirus carrying either pBabe-puro, pMx-Stat3d358L-puro, or pBabe-MyrAktHA-puro.  

Infected cells were then selected with 1 g/ml puromycin.  Ten million MYC-induced 

lymphoma cells were injected subcutaneously and then were scanned every 2-5 days prior 

to oncogene inactivation and 20 days after oncogene inactivation using BLI imaging (S7).  

Average radiance (p/s/cm2/sr) of each scan was collected and treated similarly as 

volumetric measurements for the K-rasG12D–induced lung tumors and was used to study 

tumor kinetics.  A similar normalization method was used on the BLI measurements.  We 

fitted the BLI data to equation (2) to obtain the necessary parameters for estimation of S(t) 

and D(t) behaviors. 
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Support Vector Machine (SVM) Classification. 

v-SVM and leave-one-out techniques were used for the classification and prediction 

of tumor genotype based on the first few serial weekly scans after oncogene inactivation.  A 

recent paper by Basavanhally et. al. (S8) has shown that for various medical image 

classification tasks, SVM has best performance (compared to kNN and C4.5) for n>13 

training set size. Our data set was n~20 for the SVM.  Although the datasets and tasks 

differ, we believe this indicates that SVM is a reasonable choice of classifier.  Two classes 

of data points were constructed: (1) 20 K-rasG12D oncogene-induced tumors, and (2) 8 non-

oncogene addicted MYC-induced mouse tumors also following simulated MYC oncogene 

targeted treatment.  v-SVM algorithm can be summarized as follows. Given a dataset D of 

n samples, (S1,L1),···,(Sn,Ln), where Si = <s1,s2,···,sm> was a set of feature vectors which in 

our case were the tumor volumes from weekly scan, and Li є {-1,+1} represented the binary 

class membership, SVMs mapped the input data into a high-dimensional feature space, and 

constructed a maximum margin hyperplane to separate the two classes in order to predict 

the label of a new sample.  In this work, we used the Gaussian kernel 

2 2( , ) exp( ( , ) ) / )k S S d S S     to map the input data to the high-dimensional feature 

space, where S, S’ were two feature vectors, d was the Euclidean distance, and σ the width 

parameter of the kernel.  We selected the width σ of the kernel by minimizing the leave-

one-out error estimate of the classification error between the true label and the predicted 

value of the v-SVM classification function for each σ.  In our experiments simulating a 

more heterogeneous population, we included 20 oncogene addicted K-rasG12D tumors, 8 
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non-oncogene addicted MYC tumors and 6 double mutant, MYC/ K-rasG12D, tumors for 

training and classification.  Training data was derived from normalized tumors volumes. 

 

Mouse and Human Lung Tumor Regression Analysis. 

Human lung tumor measurements from CT scan data were performed according to 

the World Health Organization (WHO) standards.  Bi-dimensional tumor measurements 

were performed before and 4 weeks following erlotinib therapy by obtaining the longest 

diameter of the tumor in the axial plane and the greatest perpendicular to it.  Tumor volume 

was calculated as a sphere and percent change at follow up was calculated as a percentage 

of baseline value.  The median doubling time of human lung tumors is 144 days (S9-S11) 

while the conditional transgenic mouse lung tumors in our study double every 37.04 days.  

To correct for different growth kinetics between species, mouse tumor kinetics were 

expanded by a factor of 3.89 (human tumor doubling time divided by mouse tumor 

doubling time).  Using this analysis, at one month after oncogene inactivation, the average 

change in volume of oncogene addicted mouse lung tumors (K-rasG12D) was 58.5% while 

patients with EGFR mutations had average change in tumor volume of 60.9%.  Similarly, 

the average change in volume of non-oncogene addicted mouse lung tumors (non-K-

rasG12D) was 12.5% while patients with wildtype EGFR had an average change of 5.7%. 
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Supplementary Figures 

Fig. S1 

 

 

Fig. S1.  Attenuation of prosurvival and prodeath signaling pathway mediators during 

regression of K-rasG12D –induced lung tumors in vivo.  (A)  K-rasG12D induced lung tumors with 



Tran et.al. 2011 Page S15  

 

K-rasG12D oncogene activated (or “ON”) and at time points following oncogene inactivation (or 

“OFF”) were evaluated for phosphorylation of signaling pathway mediators by IHC.  

Representative examples show prosurvival pathways mediated by STAT5 are phosphorylated in 

lung tumors when K-rasG12D is “ON,” but are de-phosphorylated after turning K-rasG12D “OFF” 

(day 2-3).  (B) Phospho-Stat5 and –Stat3 IHC was scored using similar system as in Fig. 3B. 
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Fig. S2 
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Fig. S2.  K-rasG12D -induced murine lung tumors are oncogene-dependent.  (A) Volumetric quantization of K-rasG12D lung tumors 

using serial microCT.  Representative tumor volume plotted as two straight lines fitted by least squares in semi-log space, one for the 

growth phase and one for the regression phase.  (B) Oncogene inactivation in K-rasG12D lung mice show individual lung tumors 

quantified and normalized over time as described in Supporting Materials and Methods show consistent complete regression of CR 

lung tumors (n=11).  (C)  Sections of K-rasG12D–induced lung tumors following doxycycline withdrawal time course show 

decreasing proliferation with time as demonstrated by immunofluorescence (IF) against Ki-67.  (D & E) Increased frequency of 

apoptotic cells with time after switching K-rasG12D “OFF.”  (D) Similar CR lung tumor sections were stained for cleaved caspase 3 

and showed increased apoptosis after switching K-rasG12D “OFF.”  (E) Lung tumor samples were assayed for apoptotic cells using 

the TUNEL procedure and imaged using IF at the indicated time points relative to switching K-rasG12D “OFF”.  IF sections were 

counterstained with DAPI to indicate cell number.
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Fig. S3 
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Fig. S3.  Validation of the ODE mathematical model for oncogene addicted tumor 

behavior.  Hold-out validation consistently demonstrates differential attenuation of 

aggregate survival and death signal curves.  (A-C) We fixed all parameters, except for a, b, 

c, d, f, and g, obtained from previous model fitting using all 3 datasets [volumetric 

measurements (V), Ki-67 (PI) and cleaved capase3 (AI) IHC data).  Using different 

combinations of two of the three datasets, we were able to predict what the signal curves 

would look like.  (A) Apoptosis index (AI, cleaved caspase3) and volumetric measurements 

(V) were model fitted to predict the signal curves.  (B) Proliferation index (PI, Ki-67) and 

volume data (V) were used to predict the signals curves.  (C) PI and AI were used to predict 

the signal curves.  Signal curves predicted from all three combinations are qualitatively 

concordant and show differential attenuation of the two signals, indicating that our 

mathematical model is robust.  (D) Boostrap resampling of variables used in the 

mathematical model confirm reproducibility.  The bootstrap observational unit is the 

individual tumor and we used 10,000 bootstrap samples.  The results of bootstrapping 

analysis demonstrated that the proposed variables of our mathematical model are robust to 

the variation in the data itself and that all parameters are reproducible (within 5% error).  

Variable names: a-starting intensity of the aggregate survival signal; b-rate of survival 

signal decay; c-time when survival signals begin dropping off; d-starting intensity of the 

death signal; f-rate of death signal decay; g-time when death signals begin dropping off; Tp-

duration of intracellular proliferation; Ta-duration of intracellular apoptosis; tp-duration of 

proliferation detectable by IHC; ta-duration of apoptosis detectable by IHC; and m,n-

thresholds that determine cellular program.  (E-I) Sensitivity analysis of the estimated 

parameters from the Levenberg-Marquardt optimization method demonstrate the precision 

-
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of the estimated values.  The results showed that all values in our estimated set are at the 

minimum of the assessed range.  (E) All parameters (a-starting intensity of the aggregate 

survival signal; b-rate of survival signal decay; c-time when survival signals begin dropping 

off) for survival signals, and (F) similar parameters for aggregate death signals (d, f & g).  

(G) Durations for intracellular proliferation (Tp, top panel) and apoptosis (Ta, bottom 

panel).  (H) Durations for which proliferation (tp, top panel) and apoptosis (ta, bottom 

panel) can be detected by IHC, and (I) thresholds m (top) and n (bottom) that determine 

cellular states.



Tran et.al. 2011 Page S25  

 

Fig. S4 
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Fig. S4.  Genetic perturbation of prosurvival and prodeath pathways in MYC-induced lymphomas can impede tumor regression 

MYC inactivation in vivo.  (A)  MYC-induced lymphomas were transduced with constructs to express mutant active 

forms of Stat3-d358L and myr-Akt1.  The resultant lines were checked for expression of Stat3-d358L and myr-Akt1 via 

phospho-western.  (B) A FACS time course using Annexin V staining was performed on the cell lines from (A) and a MYC-

induced lymphoma derived from a p53-/- background (6814) following MYC inactivation in vitro.  The myr-Akt1 and p53-/- 

MYC-induced lymphomas demonstrate decreased apoptosis beginning on day 3 and at later time points following MYC 

inactivation in comparison to the control and Stat3-d358L lymphomas. (C-G) Mathematical modeling of MYC-induced 

lymphomas with bioluminescence imaging (BLI) data demonstrated that genetic perturbations of pro-survival and pro-death 

pathways can impede tumor regression following MYC inactivation in vivo.  The kinetics of tumor regression following 

oncogene inactivation was examined in MYC-induced lymphomas in the different mutant backgrounds as shown (E-G).  Tumor 

cell lines labeled with luciferase were transduced with various constructs and then inoculated into syngeneic hosts generating 

tumors (numbers of tumors in parentheses).  MYC-induced tumors were transduced with (C) an empty Control construct (21 

tumors); (E) a Stat3-d358L construct (24 tumors); or (F) myr-Akt1 construct (16 tumors).  Also, (D) a non-transduced but 

luciferase labeled tumor line (5 tumors) was used as a control for (G) a p53-/- MYC-induced lymphoma that was labeled with 

luciferase (10 tumors).  Ten million cells of each variant (E-G) were subcutaneously injected into FVBN mice.  Tumor growth 

and regression were measured by BLI before and after MYC inactivation.  Our mathematical model for K-rasG12D -induced lung 

after 
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tumors adapted for BLI (see Supporting Materials and Methods) was able to fit the imaging data: (C) RMSE 12.6%; (D) RMSE 

7.0%; (E) RMSE 5.9%; (F) RMSE 5.6%; and (G) RMSE 10.4%. 
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Fig. S5 

 

Fig. S5.  MYC-induced lung tumors are not oncogene addicted.  Volumetric quantization of 

MYC-induced lung tumors following oncogene inactivation using serial microCT with 

normalization as performed for fig. S2 (described in Supporting Materials and Methods).  

MYC-induced murine lung tumors are oncogene-independent, despite > 6-10 weeks of 

MYC inactivation CM mice still harbor gross tumors (n=8). 

-
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Fig. S6 
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Fig. S6.  Support vector machine (SVM) trained with quantified imaging data can be used to distinguish K-rasG12D  and MYC-

induced lung tumors.  (A) An illustration of the SVM shows that the technique maps the original dataset in 3-D to a higher 

dimensional space where a maximal separating hyperplane is constructed that best separates the data points between two 

different genotypes, K-rasG12D and MYC, for prediction.  (B) Receiver operating characteristics (ROC) curves were used to show 

the accuracy of the SVM technique in predicting the oncogene dependent genotypes based on tumor volumes obtained from 

different length of time after oncogene targeted therapy.  (C-D) Sensitivity and specificity tables for predicting genotype using 

support vector machine (SVM) trained with serial imaging data from K-rasG12D and non-K-rasG12D tumors following oncogene 

addiction.  Confusion matrices show the sensitivity and specificity of the SVM technique in predicting the oncogene-dependent 

genotypes based on the number of tumor volumes measured after oncogene inactivation.  The matrices are trained using tumors 

following simulated targeted therapy from (C) K-rasG12D - and MYC-induced lung tumors or from (D) K-rasG12D - and non-K-

rasG12D (MYC and MYC/K-rasG12D double animals)-induced lung tumors. 

 

-
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Fig. S7.  Schematic integrating the temporal phospho-IHC in relation to K-rasG12D activation state.  The balance of aggregate 

survival and death signaling determines whether K-rasG12D–induced lung tumors grow, regress or become static.  (I) K-rasG12D 

signals to Erk1/2, Akt1 and Stat3/5 keeping them phosphorylated denoted by “P-” and width of downstream blue arrows.  The 

pro-death factor p38 is also activated by a signal from K-rasG12D, but negative counter-regulation by phosphos-Akt1 de-

phosphorylates p38 (as denoted by a thin downstream red arrow).  The integration of aggregate survival and death signals results 

in the shift of thresholds “m” and “n” in our mathematical model (Fig. 4) resulting in a net preponderance of cells proliferating 

and therefore net tumor growth.  (II) When K-rasG12D is inactivated Erk1/2, Akt1 and Stat3/5 are quickly de-phosphorylated and 

negative counter regulation of p38 is released, resulting in transient phosphos-p38 (denoted by a wider downstream red arrow).  

Similarly, integration of these aggregate survival and death signals results in the shift of thresholds “m” and “n” in our 

mathematical model (Fig. 4) resulting in a net preponderance of cells dying and therefore net tumor regression.  This model is 

consistent with the delayed attenuation of pro-death factors such as phospho-p38 [larger red arrow as compared to red arrow in 

panel (I)].  (III)  Following a longer period of K-rasG12D inactivation the aggregate pro-death effectors have decreased as 

exemplified by p38 (denoted by a thin downstream red arrow) and the net balance is in favor of homeostatic states such as 

quiescence or differentiation.  Width of the blue and red downstream arrows below intracellular mediators is representative of 

the degree of phospho-IHC signaling observed in Fig. 3A.
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Supplementary Videos: (A)  Regression of K-rasG12D -induced lung tumors 

imaged serially using  CT.  Movie of CR lung tumors before inactivation of K-

rasG12D by withdrawal of doxycycline is representative of 11 CR lung tumor bearing 

mice serially scanned by microCT as described in the Supporting Materials and 

Methods (AVI; 1.7 MB).  (B) Regression of K-rasG12D -induced lung tumors imaged 

serially using microCT.  Movie of CR lung tumors after inactivation of K-rasG12D 

by withdrawal of doxycycline is representative of 11 CR lung tumor bearing mice 

serially scanned by microCT as described in the Supporting Materials and Methods 

(AVI; 1.3 MB). 
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