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Twist1 overexpression increases the ability of a single prostate cancer cell to
exert traction force upon its surrounding. On the cover, a representative
deformation field image is superimposed with the corresponding
intracellular traction maps of a Myc-CaP prostate cancer cell overexpressing
Twist1 using constrained Fourier transform traction cytometry. The colors
within the cells represent the absolute magnitude of tractions in Pascals,
and the arrows represent the relative magnitude and directions. Prostate
cancer cells overexpressing Twist1 exhibited higher cell traction force than
isogenic vector control cells. See article by Gajula and colleagues (beginning
on page 1387) for more information.
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mTOR Inhibition Enhances the Efficacy of Aurora Inhibitors

Liu et al. Page 1326

Aurora kinase overexpression is known to be important for tumor development
and progression. Although Aurora kinase inhibitors have significant therapeutic
potential, their single-agent efficacy appears to be uniformly modest and
needs improvement. Liu and colleagues reveal that AML cells with polyploidy,
induced by Aurora kinase inhibition, have elevated glycolytic metabolism
and are sensitive to metabolic deprivation or glycolytic inhibitors like 2DG
(2-deoxy-D-glucose). Moreover, mTOR inhibition suppressed the metabolism of
polyploidy cells and promoted an autophagic response and apoptotic death.
Notably, p62 (SQSTM1) was demonstrated to be a metabolic regulator in
polyploidy cells. These findings indicate that mTOR inhibition enhances the
efficiency of Aurora kinase inhibitors and provide a novel treatment strategy
against AML.

miR-106a in Ovarian Serous
Carcinoma

Liu et al. Page 1314

High-grade serous ovarian cancers
(HGSOC) are poorly differentiated and
fast-growing tumors. The molecular
mechanism for HGSOC differentiation
remains unknown. microRNAs play an
important role in early development
and cell differentiation. Therefore, Liu
and colleagues performed global
microRNAprofiling, which revealed that
miR-106a is frequently upregulated in
HGSOC. Importantly, miR-106a
overexpression in normal and malignant
cell lines resulted in increased cellular
proliferation, expanded side populations,
and increased tumor initial/stem cell
populations both in vitro and in vivo.
Furthermore, miR-106a–mediated
tumor differentiation was largely
contributed by repression of p130
(RBL2), an RB tumor suppressor family
member. As such, downregulation of
RBL2 by miR-106a represents a major
molecular event that may underwrite
the aggressive and poorly differentiated
nature of HGSOC.

Twist Box isNeeded for Prostate
Cancer Metastasis

Gajula et al. Page 1387

Twist1 is a prime player during
development and is a master
transcriptional regulator of the
epithelial–mesenchymal transition that
promotes cancer metastasis. Gajula
and colleagues demonstrate three
relevant findings for prostate cancers
that overexpress Twist1: First, Twist1
leads to elevated cytoskeletal stiffness
and traction forces at the migratory edge
of cell collections; Second, theTwist box
domain is required for Twist1-induced
prometastatic processes in vitro and
metastases in vivo; andThird,Hoxa9 is a
novel Twist1 transcriptional target that
is required for Twist1-induced
prometastatic phenotypes. Thus,
targeting the Twist box domain and
Hoxa9 may effectively limit prostate
cancer metastatic potential.

LOXL2 Drives Fibroblast
Activation

Barker et al. Page 1425

Fibroblast interactions in the
extracellularmatrix are critical for normal
tissue homeostasis. Cancer-associated
fibroblasts are a heterogeneous
population of cells that support
malignant progression through multiple
mechanisms. Barker and colleagues
discovered that tumor-derived and
secreted lysyl oxidase-like-2 (LOXL2)
is vital for stromal fibroblast activation
in orthotopically grown mammary
tumors. A reduction in fibroblast-
associated a-smooth muscle actin was
demonstrated using genetic and
antibody inhibitory approaches directed
against LOXL2. Tumor-derived or
recombinant LOXL2 promoted
fibroblast properties necessary for
metastasis. Importantly, it was shown
that LOXL2 fibroblast activation was
dependent on integrin-mediated focal
adhesion kinase signaling. This novel
function of LOXL2 highlights the
potential for targeted approaches to
prevent tumor progression.
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Genomics

The Twist Box Domain Is Required for Twist1-induced
Prostate Cancer Metastasis

Rajendra P. Gajula1, Sivarajan T. Chettiar1, Russell D. Williams1, Saravanan Thiyagarajan1, Yoshinori Kato2,4,7,
Khaled Aziz1, Ruoqi Wang5, Nishant Gandhi1, Aaron T. Wild1, Farhad Vesuna4, Jinfang Ma5, Tarek Salih1,
Jessica Cades1,2, Elana Fertig3, Shyam Biswal5, Timothy F. Burns9, Christine H. Chung2, Charles M. Rudin2,
Joseph M. Herman1,2, Russell K. Hales1, Venu Raman2,4,7, Steven S. An5,7,8, and Phuoc T. Tran1,2,6,7

Abstract
Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master

regulator of the epithelial–mesenchymal transition (EMT) that promotes cancer metastasis. Structure–function
relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of
the conserved Twist box domain for metastatic phenotypes in prostate cancer. Evidence suggests that Twist1 is
overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a
transactivation mutant, Twist1-F191G, in prostate cancer cells using in vitro assays, which mimic various
stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the
migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular
properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and
anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro.
Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extrathoracic
metastases in vivo using the experimental lung metastasis assay. The Twist box was required for prostate cancer
cells to colonize metastatic lung lesions and extrathoracic metastases. Comparative genomic profiling revealed
transcriptional programs directed by the Twist box that were associated with cancer progression, such as
Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in
prostate cancer cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with
metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and
prostate cancer metastasis.

Implications:Targeting the Twist box domain of Twist1may effectively limit prostate cancer metastatic potential.
Mol Cancer Res; 11(11); 1387–400. �2013 AACR.

Introduction
Prostate cancer is the most common cancer diagnosed

in men in the United States and is responsible for the
second most cancer deaths in men (1). Patterns of disease
failure in prostate cancer suggest understanding the deter-
minants that confer progression of localized presentations
to metastatic disease will result in the largest therapeutic
gains (2).
One mechanism by which cancer cells may acquire the

characteristics necessary for metastasis is the epithelial–mes-
enchymal transition (EMT). EMT is a transcriptional pro-
gram, crucial in early embryonic development that is co-
opted by some cancer cells to facilitate aggressive and
metastatic behavior (3). Twist1 is a basic helix-loop-helix
(bHLH) multidomain transcription factor which directly
mediates EMT by transcriptional activation and repression
of E-box-regulated target genes (4, 5). A role for TWIST
in prostate cancer pathogenesis has been suggested (6, 7),
but the role of EMT and Twist1 in prostate cancer disease
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progression and metastasis is just now being explored (8, 9).
The critical domains of Twist1 and the crucial Twist1
downstream transcriptional targets required for increased
tumorigenicity and aggressive metastatic phenotypes in
prostate cancer are unknown. The carboxyl-terminal Twist
box is a highly conserved domain among Twist1 orthologues
for which little functional information in the context of
cancer phenotypes is known (5). A greater understanding of
the structure–function relationships and downstream targets
of Twist1 may allow for an increased appreciation of the
mechanisms responsible for Twist1-induced metastasis and
may facilitatemore precise inhibitory strategies of Twist1 as a
therapeutic maneuver in cancer.
Here, we used a single amino acid substitution mutation,

Twist1 codon 191 phenylalanine-to-glycine (F191G), to
study the role of the Twist box for Twist1-induced aggressive
cellular and metastatic phenotypes in prostate cancer cells.
Isogenic androgen-dependent,Myc-CaP (10), and androgen-
independent, PC3, cell lines overexpressing Twist1 or the
Twist boxmutant showed specific requirements for the Twist
box duringTwist1-inducedmetastasis of prostate cancer cells.
Gene expression profiling revealed transcriptional programs
directed by the Twist box that were associated with cancer
metastasis. Finally, we show that Twist1 directly regulates one
such target, Hoxa9, which is partially required for Twist1-
induced prostate cancer prometastatic phenotypes.

Materials and Methods
Plasmids, antibodies, and reagents
pBABE-Twist1-puro or –hygro (11) was used to construct

the Twist1-F191G mutant using the QuikChange Site-
Directed Mutagenesis Kit (Stratagene) and confirmed by
sequencing. Antibodies used were: Twist (Twist2C1a; sc-
81417, Santa Cruz Biotechnology), E-cadherin (ab53033,
Abcam), vimentin (ab92547), ZO-1 (5406, Cell Signaling
Technology), b-actin (A5316, Santa Cruz Biotechnology),
c-Myc (N-term; 1472-1, Epitomics), horseradish peroxi-
dise-conjugated secondary antibodies (Invitrogen), and
Alexa flour 488 conjugated secondary antibodies (Invitro-
gen). Hoxa9 shRNA retroviral constructs were purchased
and used as directed by Origene (cat #TG500979).

Cell line and culture conditions
PC3 and 22RV1 were obtained from American Type

Culture Collection. Myc-CaP was a kind gift from Dr. John
Isaacs (Johns Hopkins University, Baltimore, MD; ref. 10).
Growth media: Myc-CaP, Dulbecco's modified Eagle medi-
um(Invitrogen); PC3,HamsF12K (Invitrogen); and22RV1,
RPMI-1640 (Invitrogen). Cell line identity confirmed by
short tandem repeat profiling and mycoplasma tested. All
media were supplemented with 10% FBS and penicillin (100
U/mL), streptomycin (0.1 mg/mL). Cells were maintained at
37�C in a humidified incubator with 5% CO2 in air.

Retroviral experiments
Retroviral production used ecotropic and amphotropic

Phoenix packaging lines. Myc-CaP cells were transduced
with pGFP-V-RS-based shRNA contructs from Origene

as described above or with scrambled control vector for
two successive times over a 36-hour period followed by
selection with 1 mg/mL puromycin and passaged once
80% confluent.

Luciferase promoter reporter assay
Subconfluent cells were transfected using Lipofectamine

2000 (Invitrogen) with 200 ng of firefly luciferase reporter
gene construct (100 ng was used for SNAI2 reporter assays),
100 ng of the pRL-SV40 Renilla luciferase construct, and
500 ng of the Twist1 or Twist1-F191G–mutant expression
construct. Cell extracts were prepared 36 hours after trans-
fection in passive lysis buffer, and the reporter activity was
measured using the Dual-Luciferase Reporter Assay System
(Promega).

Wound-healing migration assay
Two-dimensional migration assay was conducted using a

scratch/wound model. Cells were grown in 6-well plates for
24 hours to confluence. PC3 cells were treated with 500
pmol/L TGF-b at the time of wounding. Multiple scratch
wounds were created using a P-20 micropipette tip and cells
fed with fresh complete media. Five representative fields of
the wound were marked and images were taken at 0 and 24
hours after wounding. Relative wound closure is calculated
from the remaining wound area normalized to the initial
wound area using ImageJ software (NIH Image).

Biophysical assays
Fourier transform traction microscopy (FTTM) was used

to measure the contractile stress arising at the interface
between each adherent cell and its substrate as described
(12). Briefly, cells were plated sparsely on elastic collagen type
I coated gel blocks. Images of fluorescentmicrobeads (0.2mm
in diameter, Molecular Probes) embedded near the gel apical
surface was taken at different times with cell-free reference
(traction-free) images. The displacement field between a pair
of images was then obtained by identifying the coordinates of
the peak of the cross-correlation function (13, 14). From the
displacement field and known elastic properties of the gel
(Young'smodulus of 1 kPa with a Poisson's ratio of 0.48), the
cell traction field was computed. The computed traction field
was used to obtain net contractile moment, which is a scalar
measure of the cell's contractile strength, expressed in pico-
Newton meters (pNm).
Magnetic twisting cytometry (MTC) was used to measure

material properties of the cytoskeleton as described (15, 16).
In brief, cells were plated at 150,000 cells/cm2 on coated
collagen type I plastic wells (96-well Removawell, Immulon
II: Dynetech) at 500 ng/cm2. After scratching with a 200-mL
pipette tip and the indicated time, ferrimagnetic microbeads
were functionalized to the cytoskeleton, and both stiffness, g0
and loss modulus g00, were measured over a physiologic range
of frequency (f) expressed in Pascal per nm (Pa/nm).

Matrigel invasion assay
The invasion potential was assessed using Chemicon

cell invasion assay kit (Millipore) as directed by the

Gajula et al.

Mol Cancer Res; 11(11) November 2013 Molecular Cancer Research1388



manufacturer. Of note, 8 mmol/L Transwells with Matrigel
were used for the assay. Serum-starved 0.5 to 1 � 106 cells
(12–16 hours) in 300 mL were seeded in upper chambers,
whereas lower wells were filled with 500 mL of 10% FBS
complete medium. Invading cells on the lower surface were
fixed and stained. The stain is dissolved in 200 mL of 10%
acetic acid and measured at 570 nm. Invasive potential is
derived by normalizing with the readings from blank Trans-
well inserts.

Immunohistochemistry, Immunofluorescence, and
Western blotting
Immunohistochemistry (IHC), immunofluorescence,

and Western blotting were conducted as described previ-
ously (17).

Anoikis assay and apoptosis assessment
Anoikis resistance was measured using a modified pro-

tocol (18). Cells were grown in normal attachment and
ultra-low attachment (Corning) in 6-well plates. Twenty-
four hours later, cells were blocked in 5% FBS and stained
with Alexa Fluor 488 conjugated AnnexinV followed by
propidium iodide staining (50 mg/mL; Invitrogen). Cells
were enumerated on a BD FACS Caliber (BD Bios-
ciences), and analysis was done using FlowJo analysis
software. All conditions were n ¼ 4 and two replicates
per experiment.

Clonogenic survival and soft agar colony formation
assays
Clonogenic survival was conducted as previously

described (19). Soft agar clonogenic assays used 6-well plates
precoated with 1 mL of basal 0.6% agarose in complete
media and overlaid with 2 mL of cells (5 � 103 cells/mL)
mixed with 0.3% agarose in complete media and allowed to
solidify. The wells were constantly fed with complete media
to prevent drying of agarose, and then after 10 to 15 days of
incubation, colonies were scored under phase contrast
microscopy. All conditions were repeated at least twice with
3 wells per experiment.

Animal models and histology
All procedures were carried out in accordance with the

Johns Hopkins Animal Care and Use Committee, main-
tained under pathogen-free conditions, and given food
and water ad libitum. For the subcutaneous tumor graft
assay, 100 mL of PBS and Matrigel (BD Biosciences)
mixed 1:1 containing 0.5 to 2 � 106 cells were injected
subcutaneously into both the flanks of 8-week-old male
FVB/N or athymic nude mice. Tumors measured 3 times
weekly and volume calculated: length� width� height�
p/6. Tumor growth delay is the difference between the
quadrupling times of untreated versus treated tumors. For
the experimental lung metastasis assay, 100 mL of PBS
containing 5 � 105 cells were injected into athymic nude
mice via the tail vein. After 4 weeks, the mice were
sacrificed, necropsies conducted to score surface lung
tumors and extrathoracic metastases.

Microarray data acquisition and analysis
Microarrays were conducted using GeneChipWT cDNA

Synthesis and amplification Kit and WT terminal labeling
Kit (Affymetrix). The labeled ssDNA was hybridized to the
GeneChip Mouse Gene 1.0 ST array (Affymetrix), washed
with the Fluidics station 450, and array scanning was
conducted as previously described. Arrays were normalized
using the Robust Multichip Average in the oligo Biocon-
ductor package at the transcript level. Genes and gene sets
with Benjamini–Hochberg P < 0.05 were considered sta-
tistically significant. Gene set enrichment analysis (GSEA)
was conducted using the C2 Curated Gene Sets collection
from the Molecular Signature Database 3.0 and statistical
comparisons by Fisher Exact test. More detailed description
of the analysis and R code used for this analysis are included
as Supplementary Materials and Methods.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) was conducted

using a SimpleChIP Enzymatic IP Kit (Cell Signaling
Technology). See Supplementary Materials and Methods
for details.

SYBR-green quantitative RT-PCR and prostate cancer
cDNA arrays
The iTaq Universal SybrGreen Master Mix (BioRad) was

used according to the manufacturer's instructions. Human
normal prostate and prostate cancer qPCR tissue arrays and
TWIST1 qPCR oligos were purchased from OriGene. All
relevant clinical information can be found in http://www.
origene.com/qPCR/Tissue-qPCR-Arrays.aspx.

Statistical analysis
Statistical analysis was carried out using GraphPad Prism

v5.04 (GraphPad Software). Paired comparisons were tested
using theMann–Whitney test or Fisher exact test. Through-
out this study: �, P < 0.05; ��, P < 0.01; and ���, P < 0.001.

Results
TWIST1 is overexpressed in prostate cancer and
correlates with aggressive and metastatic disease
TWIST1 expression in prostate cancers was analyzed from

14 independent microarray datasets constituting 1,013
prostate samples (20–32) using Oncomine. Ten of the 14
datasets and the aggregate analysis showed TWIST1 over-
expression in prostate cancers (Fig. 1A, P ¼ 0.002 for
aggregate). Further analysis of one of these microarray
studies (20) showed that TWIST1 overexpression correlated
with metastatic disease (Fig. 1B; P < 0.000001).
This microarray data were validated using quantitative

PCR (qPCR) for TWIST1 on human prostate cancer sam-
ples. Cancer samples (n ¼ 107) screened by qPCR con-
firmed that TWIST1 was overexpressed in prostate cancer
(40/107 or 37% showed �3-fold upregulation, 18/107 or
17% �10-fold overexpression, and some cases �50-fold
overexpression; Fig. 1C; P < 0.0001). Similar to the micro-
array data, TWIST1 overexpression was directly correlated
with prostate cancer aggressiveness as determined by

Twist box Is Needed for Prostate Cancer Metastasis
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Gleason score (Fig. 1D; P < 0.0001). These data agreed with
prior studies that showedTWIST1 overexpression in human
prostate cancer and correlation with prostate cancer disease
aggressiveness and metastasis (7, 33).

The Twist box domain is required for full transcriptional
activity of Twist1 in prostate cancer cells
Twist1 has four domains: (i) a Twist1 domain that is

highly conserved among human and mice; (ii) a glycine

rich region; (iii) bHLH domain; and (iv) the Twist box (or
WR domain). The Twist box is identical between mouse,
human, frog, zebra fish, and jellyfish species and is located
in the last 23 residues of the mouse polypeptide. The Twist
box has been shown to be necessary and sufficient to
transactivate E-box containing heterologous reporter con-
structs in vitro (34). We generated a site-specific Twist box
mutant by mutating a critical Phe-191 to Gly, referred to as
Twist1-F191G (Fig. 2A). This Twist1-F191G mutant had
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Figure1. TWIST1 is overexpressed in humanprostate cancers and correlateswithmoreaggressive andmetastatic disease. A, humanprostate cancer samples
(n ¼ 700) compared against normal prostate (n ¼ 313) from 14 independent microarray datasets for TWIST1 expression using Oncomine. The heatmap
contains individual studies (20–32). The heatmap intensity corresponds to percentile overexpression (right direction) or repression (left direction). Themedian
rank across all 14 datasets shows that TWIST1 is overexpressed in human prostate cancer, P ¼ 0.002. B, analyzing study #2 (20) from A showed that
TWIST1 overexpression correlates with metastatic disease, P < 0.000001. C, we validated this microarray analysis by conducting qPCR on primary
human prostate samples for TWIST1. TWIST1 mRNA is overexpressed in human prostate cancer (n ¼ 107) compared with normal prostate (n ¼ 24),
P < 0.0001 by Mann–Whitney t test. D, analysis of data from C broken down by Gleason score shows that TWIST1 overexpression correlates with increasing
Gleason score, P < 0.0001 using one-way ANOVA.
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Figure 2. The Twist box mutant is
deficient for Twist1 transcriptional
activity and displays an attenuated
EMT cellular marker profile in
prostate cancer cells. A, a
schematic of Twist1 protein
structure and the position 191
phenylalanine site-specific mutant
examined (this schematic is not to
scale). Key functional residues
required for transcriptional
transactivation in the Twist box, L-
187, F-191, and R-195, are shown
in green. We created constructs
overexpressing the Twist1-F191G
mutant which has the substitution
of phenylalanine-191 for glycine.
B, Twist1 promoter reporter
assays show that the Twist1-
F191G mutant is defective for
transcriptional activity. Myc-CaP
cells were transiently transfected
with expression vectors for the
firefly luciferase-linked human E-
cadherin gene (CDH1) promoter
construct and a Renilla luciferase
reporter vector for normalization of
transfection efficiency. After 36
hours, cell extracts were assayed
for luciferase and Renilla activity
and showed Twist1
overexpression repressed
transcription from the E-cadherin
gene promoter, but the Twist1-
F191G mutant was attenuated for
this function (���, P < 0.001; and
�, P < 0.05 by Mann–Whitney test).
Similar reporter assays were
conducted using a SLUG gene
(SNAI2) promoter construct and
showed that the Twist1-F191G
mutant had no ability to
transactivate transcription
compared with wild-type Twist1
overexpression (���, P < 0.001 by
Mann–Whitney test). Each bar
represents values from five to six
independent experiments
conducted in triplicate. Bars
represent column mean; error bars
�SEM. Western blot analysis was
conducted for Twist1 expression
in (C)Myc-CaP (left) andPC3 (right)
cells stably expressing Vector and
overexpressing similar levels of
Twist1 or Twist1-F191G with
b-actin used as a loading control.
Epithelial and mesenchymal
markers were also assessed by (C)
Western blotting and (D)
immunofluorescence for Twist1,
E-cadherin, ZO-1, and vimentin in
Myc-CaP (left) and PC3 (right)
cells.
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been shown previously to be deficient for transactivation of
E-box containing reporter constructs in mesenchymal cells
(34), but has not been examined in epithelial cancer cells. In
Myc-CaP androgen-dependent prostate cancer cells, Twist1
overexpression significantly repressed CDH1 (Fig. 2B, left,
P < 0.001) promoter activity (35) and increased SNAI2 (Fig.
2B, right, P < 0.001) promoter activity. Twist1-F191G was
found to be defective for both repression and activation in
these assays and significantly different from Twist1 (Fig. 2B;
P < 0.05 for both). There was some suggestion that Twist1-
F191G was more defective for activation than repression, as
Twist1-F191G was still able to repress the CDH1 promoter
to some extent but could not activate the SNAI2 promoter as
compared with Vector control (Fig. 2B, left, P < 0.05 and
right, P ¼ 0.0952). Similarly, in HEK 293 cells, Twist1
repressed CDH1 promoter activity, whereas Twist1-F191G
only partially repressed the CDH1 promoter activity com-
pared with Twist1 wild-type (Supplementary Fig. S1A, both
P < 0.001). Neither Twist1 nor Twist1-F191G seemed to
alter expression from the SNAI2 promoter inHEK 293 cells,
which is not surprising as this cell line is of likely mesen-
chymal origin (Supplementary Fig. S1B; all P>0.05). These
reporter assay data were concordant with levels of the
endogenous Cdh1 and Snai2 genes and respective gene
products when Myc-CaP cells overexpressed Twist1 or
Twist1-F191G stably (Fig. 2C and Supplementary Fig.
S1C–E). Twist1-F191G bound the Cdh1 promoter as well
as Twist1 wild-type in Myc-CaP cells according to ChIP-
qPCR (Supplementary Fig. S1F). These results suggest that
the Twist box domain is required for the full transcriptional
activity of Twist1.

The Twist box mutant is partially defective for induction
of EMT markers in prostate cancer cells
Metastasis is a complex series of discrete events that a

neoplastic cell must traverse (36). These serial events
include: loss of cell-to-cell adhesion, migration and invasion
into the local extracellular matrix, intravasation into the
vasculature, resistance to anoikis, extravasation into the
parenchyma of distant tissues, and then colonization into
a macroscopic metastatic tumor. To ascertain the role of the
Twist box domain in a subset of thesemetastatic steps in vitro
and in vivo, stable isogenic cell lines expressing Twist1 and
Twist1-F191G in Myc-CaP and PC3 prostate cancer cells
were established (Western blot analysis, Fig. 2C; and
immunofluorescence, Fig. 2D, top row and Supplementary
Fig. S2A and S2B). Consistent with an EMTmarker profile,
stable Twist1 overexpression led to downregulation of epi-
thelial markers E-cadherin and ZO-1 in Myc-CaP cells and
in PC3 cells and upregulation of the mesenchymal marker
vimentin in bothMyc-CaP and PC3 cells (Western blotting
and immunofluorescence shown in Fig. 2C and D and
qPCR shown in Supplementary Figs. S1C and S3A). The
Twist box mutation, Twist1-F191G, resulted in a reduced
ability to downregulate E-cadherin and ZO-1 and upregu-
late vimentin in Myc-CaP cells (Fig. 2C and D and Sup-
plementary Figs. S1C and S3A). A similar, but less dramatic
loss of an EMTmarker profile was seen with PC3 cells stably

overexpressing Twist1-F191G (Fig. 2C and D; Supplemen-
tary Fig. S2C and S2D show immunofluorescence quanti-
fication of PC3 cells; and Supplementary Fig. S3B and S3C
show qPCR for CDH1 and VIM). The findings from these
prostate cancer cell lines overexpressing Twist1 and Twist1-
F191G suggest that the Twist1 box domain is required for
Twist1 to induce a full EMT marker profile.

Twist1 overexpression increases cellular motility that is
partially defective in the Twist1-F191G mutant
We next examined Twist1-induced cell migration and

correlates of cell mechanics using the scratch/wound-
healing model. For this study, we made a scratch into
an ensemble of confluent Myc-CaP cells (Fig. 3A) and
measured the spatiotemporal changes in forced motions of
microbeads anchored to the cytoskeleton through integrin
cell adhesion receptors (15, 16). Using MTC, we mea-
sured cytoskeletal stiffness (g0) and internal friction (g00)
before, immediately after, and 24-hours after making a
scratch. Over five decades of frequency, we found no
differences in stiffness g0 and friction g00 between isogenic
Myc-CaP cell ensembles (Twist1 vs. Vector) before or
immediately after a scratch (Supplementary Fig. S4A and
S4B). By 24 hours, however, Twist1-overexpressing cells
infiltrated more into the site of the scratch wound than
Vector control cells (Fig. 3A) and showed appreciably
higher cytoskeletal stiffness (Fig. 3B and Supplementary
Fig. S4c) and friction (Fig. 3C and Supplementary Fig.
S4C). At 24-hour after making a scratch, Twist1-over-
expressing cell ensembles exhibited a 1.6-fold higher
stiffness than Vector control ensembles (Fig. 3D). Most
striking was the greatest differences of cytoskeletal stiffness
between Twist1 and Vector control cell ensembles were
localized at the leading migratory front (Fig. 3A and E).
Twist1-overexpressing cell ensembles had progressively
decreasing cytoskeletal stiffness with increasing distance
from the leading migratory edge (1st > 2nd > 3rd > 4th
cell layers; Fig. 3A and E).
We then directly assessed the requirement of the Twist

box domain for Twist1-induced cell invasive potential using
the scratch/wound-healing assay in vitro. Importantly,
Twist1 overexpression did not increase the proliferative
potential of Myc-CaP or PC3 cells (Supplementary Fig.
S5).Myc-CaP cells overexpressing Twist1 migrated 2.5-fold
faster than Vector controlMyc-CaP cells (Fig. 3F andG, P <
0.05). The Twist1-F191G–overexpressing cells were signif-
icantly less migratory than Twist1-overexpressing cells, but
still migrated more than the Vector (1.5-fold; Fig. 3F and G,
both comparisons P < 0.05). The same trends for cell
migration were also observed in PC3 cells (Supplementary
Fig. S6).
Cancer cell migration and invasion entail the ability of

malignant cells to exercise contractile force upon their
surroundings (37). Using traction microscopy (13, 14), we
interrogated the force-generating capacity of single Myc-
CaP and PC3 cells overexpressing Twist1 (Fig. 3H–J and
Supplementary Fig. S7). Compared with Vector, the
Twist1-overexpressing Myc-CaP and PC3 cells showed
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increased cell spreading area and net contractile moment, a
scalar measure of the cell's contractile strength (Fig. 3I and J,
P < 0.01 both measurements and Supplementary Fig. S7B
and C, P < 0.001 both measurements). The Twist box
mutant displayed less cell spreading and lower net contractile
moment compared with Twist1 (Fig. 3I and J, P < 0.05 for

both measurements). These single-cell biophysical data
corroborated our results with bulk migration assays. Col-
lectively, these data suggested that the Twist box domain was
required for increasing cytoskeletal force generation in
prostate cancer cells that was associated with the full migra-
tory potential of Twist1.
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Figure 3. Twist1 overexpression induces spatiotemporal changes in the material properties of the living cytoskeleton during cellular migration of prostate
cancer cells. A, representative bright fieldimages of Myc-CaP cells 24 hours after wound scratch. Using MTC, stiffness g0 (B) and loss modulus g00 (C)
were measured over a physiological range of frequency (f). Open and closed squares represent g0 and g00 of Myc-CaP overexpressing Twist1 cells.
Open and closed circles represent g0 and g00 of Vector control cells. The lines are the fit of experimental data to the structural damping equation
with addition of a Newtonian viscous term as previously described (15). Fitting was carried out by non-linear regression analysis. The colors indicate
the respective cell layer from the migrating front (as shown in A). Data are presented as Median (1st layer: Vector n ¼ 73, Twist1 n ¼ 77; 2nd layer:
Vector n ¼ 119, Twist1 n ¼ 168: 3rd layer: Vector n ¼ 101, Twist1 n ¼ 87; 4th layer: Vector n ¼ 44, Twist1 n ¼ 64). D, stiffness of Vector and
Twist1 expressing Myc-CaP cells probed at 0.75 Hz, following scratch wound (T, 0 hour) and 24 hours after. Data are presented as Geometric
mean � SE (Vector: T 0 hour n ¼ 169, T 24 hours n ¼ 337; Twist1: T 0 hours n ¼ 240, T 24 hours n ¼ 396). E, spatial distribution of cell stiffness
24 hours after making a scratch in Vector and Twist expressing Myc-CaP cells [data are presented as Median and are same as in (B)]. F, scratch
wound-healing assay was conducted in Myc-CaP isogenic cell lines and representative images shown at 0 hour and 24 hours. G, relative wound closure
is calculated by the remaining wound area normalized to the initial wound area (n ¼ 3, 3 fields; �, P < 0.05 by Mann–Whitney test) by ImageJ
software (NIH) and showed that Myc-CaP cells overexpressing Twist1-F191 cells were less migratory than wildtype Twist1 cells. H, Twist1
overexpression increases single prostate cancer cell traction forces on the substratum, which is attenuated by the Twist box mutation Twist1-F191G.
The cell traction forces for individual cells (n ¼ 20–21) is measured by using FTTM. The top panel shows representative phase contrast images
of Myc-CaP isogenic cell lines. The bottom panel shows the traction maps; the colors within the cells represent the absolute magnitude of tractions in
Pascals, and the arrows represent the relative magnitude and directions. I, Twist1 overexpression increases the mean of the projected area
represented in bar graph format and the Twist box mutant isogenic cell line is attenuated for this phenotype. J, Twist1 overexpression increases cell
traction force exerted by a single living cell, or net contractile moment, and the Twist1-F191G mutant is completely deficient for this function. Bars
represent column mean; error bars are �SEM. The values are significant by Mann–Whitney test: �, P < 0.05; and ���, P < 0.001.
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The Twist box is required for Twist1-induced prostate
cancer invasion, cell death resistance, and anchorage-
independent growth in vitro
Both Myc-CaP and PC3 cells overexpressing Twist1

showed an increased invasiveness compared with Vector
control cells using a Matrigel-coated Transwell invasion
assay (Fig. 4A and B, both P < 0.05). The Twist box
mutant was completely defective for invasion in Myc-CaP
cells compared with Twist1 wild-type (Fig. 4A, P < 0.05)
and trended toward being less invasive in PC3 cells (Fig.
4B, P ¼ 0.156). Similar to motility, the Twist box is at

least partially required for Twist1-induced prostate cancer
invasion.
The resistance to anoikis facilitates metastasis of cancer

cells to distant organs. Both Twist1-overexpressing Myc-
CaP and PC3 cells showed decreased apoptosis when
grown in suspension compared with their isogenic Vector
control cells (Fig. 4C–F, both cell lines P < 0.05). The
Twist1-F191G mutant in Myc-CaP and PC3 cells were
similar to their isogenic Vector control cells (Fig. 4C–F,
both cells P>0.47) for anoikis resistance. We also observed
that the Twist box was required to confer radioresistance
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Figure 4. The Twist box mutant is defective for Twist1-induced invasion, anoikis resistance, and soft agar tumorigenicity. Transwell invasion assays with
Matrigel were conducted with isogenic (A) Myc-CaP (n ¼ 7) and (B) PC3 cells (n ¼ 6). The Myc-CaP cells were allowed to invade for 24 hours and PC3
cells for 60 hours. Twist1 overexpression increased invasion into Matrigel for both Myc-CaP and PC3 cells, but the Twist1-F191G mutant conferred less
invasive ability to these cells (represented by column mean �SEM; �, P < 0.05 by Mann–Whitney test). Cells were grown adherent or in suspension
using ultra-low attachment dishes. The amount of apoptotic cell death or anoikis for the ultra-low attachment conditions was quantified by AnnexinV-
AlexaFluor 488 and propidium iodide staining followed by flow-cytometric analysis. Representative dot plots of (C) Myc-CaP and (E) PC3 Twist1
isogenic cell lines are shown. Percent of cells in quadrants II (early apoptotic) and III (late apoptotic) that constitute apoptotic fractions are in bold. Percent
apoptosis was calculated by normalizing total apoptotic fraction in ultra-low attachment conditions to that of adherent cells and plotted as bar graph�SEM
for (D) Myc-CaP (n ¼ 8) and (F) PC3 (n ¼ 6) Twist1 isogenic cell lines (�, P < 0.05; and ��, P < 0.01 by Student t test). A total of 5 � 105 cells were
embedded in soft agar and incubated for 2 weeks. Colonies containing above 50 cells were scored in at least 5 random fields. Representative phase contrast
images of (G) Myc-CaP and (I) PC3 Twist1 isogenic cell lines at �40 magnifications are shown. The percent clonogenicity in soft agar is calculated by
normalizing the number of colonies to the total number of cells and represented as bar graphs�SEM for (H) Myc-CaP (n¼ 6) and (J) PC3 (n¼ 6; �, P < 0.05;
��, P < 0.01; and ���, P <0.001 by Mann–Whitney test).
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to prostate cancer cells (Supplementary Fig. S8). Alto-
gether, these data show that Twist1 overexpression can
confer resistance to multiple cell death stimuli, and that
the Twist box domain is required for these Twist1 activ-
ities in prostate cancer cells.
The in vitro anchorage-independent growth of Myc-

CaP and PC3 cells stably overexpressing Twist1 and the
Twist box mutant was conducted (Fig. 4G–J). Both
Twist1-overexpressing Myc-CaP and PC3 cells showed
increased frequency of colonies in soft agar compared with
their isogenic Vector control cells (Fig. 4G–J, both cells
P < 0.01). In addition, Myc-CaP cells overexpressing
Twist1 had colonies of larger size (Fig. 4G). Myc-CaP
and PC3 Twist box mutant cells had a similar frequency of

colonies in soft agar compared with their isogenic Vector
control cells (Fig. 4G–J, both cells P>0.20). These general
results were repeated and confirmed in a third prostate
cancer cell line, 22Rv1, stably overexpressing Twist1 and
Twist1-F191G (Supplementary Fig. S9). These data fur-
ther confirm the importance of the Twist box domain for
aggressive in vitro prostate cancer cell behavior induced by
Twist1.

The Twist box is required for Twist1-induced prostate
cancer metastasis in vivo
Using a subcutaneous tumor graft assay, we did not

observe Twist1 or Twist1-F191G overexpression increasing
the in vivo primary tumorigenic potential or primary tumor
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Figure 5. Twist1 overexpression confers metastatic ability to Myc-CaP prostate cancer cells in vivo that is dependent on the Twist box domain. The
experimental lung metastasis assay was conducted with Myc-CaP Twist1 isogenic cell lines. A total of 5 � 105 cells were tail vein injected into 8-week-old
athymic nude male mice, sacrificed 4 weeks later and inspected for lung colonization and extrathoracic metastases. Cohorts of 4 to 6 mice were used
for each cell line and experiments were carried out three times. A, representative necropsy photographs of the lungs with lung tumors distinguished by black
arrows. B, a table comparing the ability of the three isogenic cell lines to colonize lung tumors in vivo from (A). Twist1-overexpressing Myc-CaP cells
are able to formmacroscopic lung tumors in vivo in amuch higher frequency of mice (10/18 or 55.6%) than Vector control cells (2/17 or 11.8%; P¼ 0.0116 by
Fisher exact test). The Twist1 box mutant Myc-CaP cells had an intermediate phenotype in vivo (4/12 or 33.3% of mice; P ¼ 0.198 compared with
Vector and P ¼ 0.2839 compared with wild-type Twist1 by Fisher exact test). C, representative hematoxylin and eosin (H&E) images of lung samples
from A with insets showing magnified views of lung tumors. D, representative necropsy photographs of extrathoracic metastases from mice injected with
Twist1 isogenic cells with metastases indicated by black arrows. These extrathoracic metastases represent the consequence of prostate cancer cells
undergoing the full metastatic pathway following tail vein injection. E, a table comparing the ability of the three isogenic Myc-CaP cell lines to form
extrathoracic metastases from D. Twist1 overexpression conferred Myc-CaP cells with the ability to form extrathoracic metastases at a higher frequency in
mice (11/18 or 61.1%) than Vector control cells (1/17 or 5.9%) and the Twist1 box mutant overexpressing cells (2/12 or 16.7%; P ¼ 0.0009 for Twist1
vs. Vector and P¼ 0.0256 for Twist1 vs. Twist1-F191G by Fisher exact test). F, representative H&E image of a Twist1-induced extrathoracic metastasis with
the inset showing amagnified image. G, representative anti-Myc immunohistochemical images of lungs isolated frommice tail vein injected with Myc-CaPþ
Vector cells (left) or Myc-CaPþ Twist1 cells (right). The lung tumor (and extrathoracicmetastases not shown) stained positive for c-Myc, confirming the tumor
cells were Myc-CaP cells.
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growth of Myc-CaP, PC3, or 22Rv1 cells (Supplementary
Fig. S10). The metastatic potential of Twist1 and Twist1-
F191G–overexpressingMyc-CaP cells was assessed using the
experimental lung metastasis assay. Twist1 overexpression
significantly increased the ability of Myc-CaP cells to col-
onize the lungs and form macroscopic metastases in vivo
(Fig. 5A and B; 10/18 mice with Twist1-overexpressing
Myc-CaP cells vs. 2/17 mice with isogenic Vector control
cells, P ¼ 0.0116). The Twist box mutant overexpressing

Myc-CaP cells lost some potential to formmacroscopic lung
metastases in vivo and had an intermediate phenotype to
Vector and Twist1 Myc-CaP cells (Fig. 5B; 4/12 mice with
Twist1-F191G–overexpressingMyc-CaP cells, P>0.2). The
tumor cell morphology from Twist1 and Twist1-F191G–
overexpressing cells was not different (Fig. 5C). Interesting-
ly, mice injected tail vein with Twist1-overexpressing Myc-
CaP cells showed extrathoracic metastases to distant subcu-
taneous tissues, abdominal organs, and distant lymph nodes
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(Fig. 5D–F). Cells injected in the venous circulation seed the
lungs and therefore must undergo the full metastatic path-
way to produce extrathoracic metastases. Twist1 overexpres-
sion significantly increased the frequency of mice with
extrathoracic metastases (Fig. 5E; 11/18 mice with
Twist1-overexpressing Myc-CaP cells compared with 1/17
mice with isogenic Vector control cells, P ¼ 0.0009). The
Twist box was required forMyc-CaP cells to undergo the full
metastatic pathway and give rise to extrathoracic metastases
(Fig. 6E; 2/12 mice injected with Twist1-F191G–overex-
pressingMyc-CaP cells, P¼ 0.0256 compared with Twist1;
and P ¼ 0.553 compared with Vector control cells). The
Myc-CaP identity of lung tumors and extrathoracic metas-
tases was confirmed by Myc IHC (Fig. 5G). These results
show that the Twist box domain is required for Twist1-
induced metastasis of prostate cancer cells in vivo.

Gene expression profiling revealsHoxa9 as a direct target
of Twist1 that is partially required for Twist1-induced
prometastatic phenotypes
Global gene expression analysis on the isogenic Myc-CaP

lines revealed several genes differentially expressed in each
pairwise comparison. Compared with Vector control,
Twist1 overexpression altered the expression of 424 genes.
Twist1-F191G overexpression compared against Vector
control altered the expression of much fewer genes, 53
genes, and the majority (28/53) of these genes were also
observed with Twist1 overexpression. Between Twist1 and
Twist1-F191G, 158 genes were altered, of which the major-
ity were also altered in Twist1 (81/158; Fig. 6A and
Supplementary Tables S1 and S2). This expression pattern
is consistent with Twist1-F191G having a greatly attenuated
transcriptional program compared with wild-type Twist1
(Fig. 6B). These global gene expression profiling data are
consistent with our promoter reporter assays conducted
above suggesting that the Twist box domain is required for
the full transcriptional activity of Twist1 (Fig. 2B and
Supplementary Fig. S1). These findings are highly suggestive
of a transcriptional mechanism for the phenotypic differ-
ences observed between prostate cancer cells overexpressing
Twist1 and those overexpressing the Twist box mutant.
GSEA (38) was used to identify gene sets which were

overrepresented in Twist1 but not Twist1-F191G. Many of
the overrepresented gene sets were related to phenotypes
which we directly assayed, aggressive cellular behavior and
metastasis, and were observed with overexpression of Twist1
but not Twist1-F191G (Fig. 6C). One gene set of interest
was directed by the homeobox transcription factor, Hoxa9,
which is strongly implicated in leukemogenesis. Further-
more, the Hox homolog HOXA5 had been shown previ-
ously to interact physically with Twist and antagonize
repression of p53 to genotoxic stressors. Thus, we confirmed
our microarray data by qPCR andWestern blotting showing
that Twist1 overexpression resulted inHoxa9/HOXA9 over-
expression in Myc-CaP and PC3 (Fig. 6D and E; both P <
0.01 by qPCR and Supplementary Fig. S11A and S11B by
Western blotting). Twist1 also bound to the Hoxa9 pro-
moter in a region containing canonical E-box sequences as

shown by ChIP-qPCR (Fig. 6F). Consistent with our global
gene expression data, the Twist box mutant was unable to
upregulate the expression ofHoxa9/HOXA9 overexpression
in Myc-CaP and PC3 and was similar to Vector control
(Fig. 6D and E; both P < 0.05 by qPCR and Supplementary
Fig. S11A and S11B by Western blotting). However, the
Twist1-F191G mutant was still capable of binding to the
Hoxa9 promoter by ChIP-qPCR, suggesting that the Twist
box was required for the full transcriptional activity of
Twist1 (Fig. 6F and summarized differences between in
vitro and in vivo phenotypes of Twist1 and Twist1-F191G
in Fig. 6G).
Interestingly, we found that many of the in vitro prometa-

static phenotypes of Twist1 overexpression inMyc-CaP cells
were significantly blunted following short hairpin RNA
(shRNA)-mediated knockdown of Hoxa9 (Fig. 7). Three
separate shRNA constructs against Hoxa9 were each able to
knockdown Hoxa9 mRNA and protein expression in Myc-
CaP cells overexpressing Twist1 (Fig. 7A; P < 0.05 for
qPCR). Hoxa9 knockdown in these Twist1-overexpressing
cells resulted in a reduction in Twist1-induced cellular
migration, invasion, anoikis resistance, and soft agar clono-
genicity (Fig. 7B–G; P < 0.05 all at least). Collectively, these
data suggest that Twist1 imparts prometastatic phenotypes
on prostate cancer cells, in part, by directly upregulating
Hoxa9 expression.

Discussion
Our study shows that Twist1 overexpression in prostate

cancer cells induces an EMT phenotype, augments migra-
tion, invasion, and resistance to anoikis and metastasis. We
show that the highly conserved Twist box domain is required
for many of these properties of Twist1 associated with
aggressive tumor cell behavior in vitro and most importantly
for metastasis in vivo. We also show that the Twist box
domain is required for the full transcriptional activity of
Twist1 and facilitates these prometastatic cellular functions
by directing specific transcriptional programs. We show that
Twist1 directly regulates the transcriptional prometastatic
target,Hoxa9, which is at least partially required for Twist1-
induced prometastatic phenotypes in prostate cancer cells.
The Twist box is highly conserved among vertebrates and

is critical for the role of Twist1 in development as shown by
inactivating mutations in this region of the human gene
resulting in the Saethre–Chotzen syndrome, characterized
primarily by craniosynostosis (5, 39). Consistent with
humans, the Charlie Chaplin mouse strain with craniosyn-
ostosis and hind-limb abnormalities results from a S192P
substitution mutation in the Twist box domain (40). Mech-
anistically, Twist1 binds to the Runx2 transcription factor
via the Twist box and inhibits the Runx2 transcriptional
program necessary for osteoblast differentiation. Similarly,
Twist1 binds Sox9 via the Twist box and inhibits Sox9-
dependent transcriptional programs required for chondro-
cyte differentiation (41). Twist1 may also directly modulate
transcription of target genes, and the Twist boxwas shown to
be both necessary and sufficient for this transactivation
activity (34). The Twist box transactivation domain likely
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adopts an a-helical structure, and the three amino acids,
Leu-187, Phe-191, Arg-195, are essential for transactivation
function and may occupy the same three-dimensional sur-
face of this a-helix. Twist1 has been shown to directly
upregulate the expression of several target genes important
for cancer progression like Akt2 expression, which enhances
cell migration, invasion, and resistance to chemotherapy
(42). In agreement with these findings in breast cancer, our
expression profiling of Twist1-overexpressing prostate can-
cer cells were similar to gene signatures consistent with
increased cell migration, invasion, and resistance to apopto-
sis. However, whether the Twist box mediates a transcrip-
tional program required for Twist1-induced metastasis in
prostate cancer cells by actively inhibiting another transcrip-

tion factor or by directly regulating downstream target genes
requires further study.
The role of the Twist box in cancer-related functions has

only recently been appreciated. In a recent study, the Twist
box was required for Twist1 binding to the NF-kB subunit
RELA to activate transcriptional activity, increased DNA-
binding affinity to the interleukin 8 (IL-8) promoter and
transcriptional activation that was required for breast cancer
cell invasion in vitro (43). We did not observe direct Twist
box-dependent regulation of IL-8 by Twist1 in our system,
but in agreement with this study, we did observe Twist box-
dependent gene sets consistent with NF-kB–regulated
inflammatory genes. The Twist box has also recently been
shown to bind p53 and induce destabilization via MDM2-
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mediated degradation in sarcoma cells (44). Thismechanism
is separate from Twist1 indirect regulation of p53 by
modulating the ARF/MDM2/p53 pathway (45). We do
not believe that Twist box-dependent p53 regulation
explains the Twist1-induced metastatic phenotypes we
observed in prostate cancer cells as PC3 cells are TP53-null
and a similar Twist1-F191L substitution mutation in the
Twist box did not affect Twist1-p53 interaction (44). Our
study findings require validation in other cancer histologies
before our results can be generalized further and confirma-
tion using autochthonous transgenic models of tumorigen-
esis and spontaneous metastasis models is needed. Despite
these limitations, our current study confirms the recent in
vitro data showing the importance of the Twist box domain
for the protumorigenic activities of Twist1. Importantly, our
study shows for the first time the requirement of the Twist
box for the prometastatic functions of Twist1 in vitro and in
vivo.
TWIST1 expression levels seem to be correlated with

prostate cancer aggressiveness and factors associated with
lethal metastatic disease (Fig. 1; refs. 7, 33). The down-
regulation of Twist1 in androgen-independent prostate
cancer cells increased their sensitivity to anticancer drugs
and suppressed their migration and invasion abilities, sug-
gesting Twist1 inactivation as a potential therapeutic strat-
egy (7). TWIST1 expression during postnatal life is restrict-
ed tightly to a subpopulation of mesoderm-derived tissues,
and limited studies suggest that Twist1 inhibition system-
ically may be well tolerated (46). Furthermore, our previous
study suggested that suppression of Twist1 to physiologic
levels in vivo is sufficient for anticancer effects (11). How-
ever, the direct inhibition of Twist1 as a therapeutic maneu-
ver still poses a few potential challenges. First, Twist1 is a
pleiotropic transcription factor essential for mammalian
development (47). Second, bHLH transcription factors have
been difficult to target directly with small molecules (48). A
solution to these issues is dissecting what are the critical
domains of Twist1 and what are the crucial Twist1 down-
stream transcriptional targets that are required for Twist1-
dependent tumorigenicity and prometastatic functions.
Using comparative gene expression profiling of Twist1

and Twist box mutant cells, we discoveredHoxa9 as a novel
direct gene target of Twist1 that was required, in part, for
many Twist1-induced prostate cancer prometastatic pheno-

types in vitro. Although there is a rich literature on the
oncogenic role of Hoxa9 in leukemia (49), only one recent
report has suggested a role forHoxa9 in prostate cancer (50).
Thus, we have uncovered a novel mechanism involving
Twist1 and Hoxa9 oncoproteins collaborating to facilitate
prostate cancer progression and metastatic cellular behavior.
In conclusion, these data herein have increased our insight

into the structure–function relationships of the Twist1
oncoprotein in cancer and point to the Twist box as a critical
domain required for directing transcriptional prometastatic
programs in prostate cancer cells. Our findings suggest
therapeutic measures against TWIST1-overexpressing pros-
tate cancer cells should be minimally directed against the
Twist box domain and Twist1-regulated transcriptional
targets such as Hoxa9.
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